A method for the synthesis of nanoparticles of the Cu-Fe bimetallic system with limited mutual solubility of the components is proposed. The synthesis method consists of a one-stage process of IR pyrolysis of precursors in the form of films obtained from a joint solution of polyacrylonitrile and hydrates-nitrates of iron and copper. The effect of the synthesis temperature on the structure formation of the nanocomposites and the phase composition of bimetallic Cu-Fe nanoparticles dispersed in the carbon matrix was studied. The analysis showed a simultaneous presence of Fe and Cu phases in nanocomposites, presumably with a low solubility of the components. The average particle size is 14-17 nm and changes insignificantly with an increase in the synthesis temperature from 400 to 700°C. An increase in the synthesis temperature to 800°C led to a broadening of the particle size distribution and the increase in the average size. The formation of complex carbon nanostructures on Cu-Fe nanoparticles is found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.