Photocatalytic degradation has been suggested to be a cheap and efficient way to dispose of organic pollutants, such as dyes. Therefore, our research team strives to produce nanophotocatalysts in a simple and inexpensive way. In this work, the Pechini sol–gel technique was employed for the facile synthesis of Mn0.5Zn0.5Fe2O4/Fe2O3 and Fe0.5Mn0.5Co2O4/Fe2O3 as mixed metal oxide nanoparticles for the efficient photocatalytic degradation of Rhodamine B and Congo Red dyes. XRD, FT-IR, a N2 adsorption/desorption analyzer, EDS, FE-SEM, and an UV–Vis diffuse reflectance spectrophotometer were used to characterize the produced samples. The XRD patterns revealed that the average crystallite size of the Fe0.5Mn0.5Co2O4/Fe2O3 and Mn0.5Zn0.5Fe2O4/Fe2O3 samples is 90.25 and 80.62 nm, respectively. The FE-SEM images revealed that the Fe0.5Mn0.5Co2O4/Fe2O3 sample consists of cubic and irregular shapes with an average diameter of 1.71 µm. Additionally, the Mn0.5Zn0.5Fe2O4/Fe2O3 sample consists of spherical shapes with an average diameter of 0.26 µm. The energy gaps of the Fe0.5Mn0.5Co2O4/Fe2O3 and Mn0.5Zn0.5Fe2O4/Fe2O3 samples are 3.50 and 4.3 eV and 3.52 and 4.20 eV, respectively. In the presence of hydrogen peroxide, the complete degradation of 100 mL of 20 mg/L of Rhodamine B and Congo Red dyes occurred at pH = 8 and 3, respectively, within 50 min, using 0.1 g of the synthesized samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.