Acute exposure to as little as three cigarettes and chronic smoking induce largely concordant changes in airway epithelial gene expression. Differences in short-term and long-term effects of smoking on metallothionein expression and their relationship to lung cancer requires further study given these enzymes' role in the oxidative stress response.
Background Bronchoscopy for suspected lung cancer has low diagnostic sensitivity, rendering many inconclusive results. The Bronchial Genomic Classifier (BGC) was developed to help with patient management by identifying those with low risk of lung cancer when bronchoscopy is inconclusive. The BGC was trained and validated on patients in the Airway Epithelial Gene Expression in the Diagnosis of Lung Cancer (AEGIS) trials. A modern patient cohort, the BGC Registry, showed differences in key clinical factors from the AEGIS cohorts, with less smoking history, smaller nodules and older age. Additionally, we discovered interfering factors (inhaled medication and sample collection timing) that impacted gene expressions and potentially disguised genomic cancer signals. Methods In this study, we leveraged multiple cohorts and next generation sequencing technology to develop a robust Genomic Sequencing Classifier (GSC). To address demographic composition shift and interfering factors, we synergized three algorithmic strategies: 1) ensemble of clinical dominant and genomic dominant models; 2) development of hierarchical regression models where the main effects from clinical variables were regressed out prior to the genomic impact being fitted in the model; and 3) targeted placement of genomic and clinical interaction terms to stabilize the effect of interfering factors. The final GSC model uses 1232 genes and four clinical covariates – age, pack-years, inhaled medication use, and specimen collection timing. Results In the validation set (N = 412), the GSC down-classified low and intermediate pre-test risk subjects to very low and low post-test risk with a specificity of 45% (95% CI 37–53%) and a sensitivity of 91% (95%CI 81–97%), resulting in a negative predictive value of 95% (95% CI 89–98%). Twelve percent of intermediate pre-test risk subjects were up-classified to high post-test risk with a positive predictive value of 65% (95%CI 44–82%), and 27% of high pre-test risk subjects were up-classified to very high post-test risk with a positive predictive value of 91% (95% CI 78–97%). Conclusions The GSC overcame the impact of interfering factors and achieved consistent performance across multiple cohorts. It demonstrated diagnostic accuracy in both down- and up-classification of cancer risk, providing physicians actionable information for many patients with inconclusive bronchoscopy.
Lung cancer remains the leading cause of cancer-related death due to its advanced stage at diagnosis. Early detection of lung cancer can be improved by better defining who should be screened radiographically and determining which imaging-detected pulmonary nodules are malignant. Gene expression biomarkers measured in normal-appearing airway epithelium provide an opportunity to use lung cancer-associated molecular changes in this tissue for early detection of lung cancer. Molecular changes in the airway may result from an etiologic field of injury and/or field cancerization. The etiologic field of injury reflects the aberrant physiologic response to carcinogen exposure that creates a susceptible microenvironment for cancer initiation. In contrast, field cancerization reflects effects of "first-hit" mutations in a clone of cells from which the tumor ultimately arises or the effects of the tumor on the surrounding tissue. These fields might have value both for assessing lung cancer risk and diagnosis. Cancer-associated gene expression changes in the bronchial airway have recently been used to develop and validate a 23-gene classifier that improves the diagnostic yield of bronchoscopy for lung cancer among intermediate-risk patients. Recent studies have demonstrated that these lung cancer-related gene expression changes extend to nasal epithelial cells that can be sampled noninvasively. While the bronchial gene expression biomarker is being adopted clinically, further work is necessary to explore the potential clinical utility of gene expression profiling in the nasal epithelium for lung cancer diagnosis, lung cancer risk assessment, and precision medicine for lung cancer treatment and chemoprevention. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.