Obstructive sleep apnea (OSA) is a common medical condition that occurs in a considerable percentage of the population. Substantial evidence shows that patients with OSA have an increased incidence of hypertension compared with individuals without OSA, and that OSA is a risk factor for the development of hypertension. It is established that OSA may be implicated in stroke and transient ischemic attacks. OSA is associated with coronary heart disease, heart failure, and cardiac arrhythmias. Pulmonary hypertension may be associated with OSA, especially in patients with pre-existing pulmonary disease. Although the exact cause that links OSA with cardiovascular disease is unknown, there is evidence that OSA is associated with a group of proinflammatory and prothrombotic factors that have been identified as important in the development of atherosclerosis. OSA is associated with increased daytime and nocturnal sympathetic activity. Autonomic abnormalities seen in patients with OSA include increased resting heart rate, decreased R-R interval variability, and increased blood pressure variability. Both atherosclerosis and OSA are associated with endothelial dysfunction, increased C-reactive protein, interleukin 6, fibrinogen, plasminogen activator inhibitor, and reduced fibrinolytic activity. OSA has been associated with enhanced platelet activity and aggregation. Leukocyte adhesion and accumulation on endothelial cells are common in both OSA and atherosclerosis. Clinicians should be aware that OSA may be a risk factor for the development of cardiovascular disease.
BackgroundNeuregulin‐1β (NRG‐1β) is a growth factor critical for cardiac development and repair with therapeutic potential for heart failure. We previously showed that the glial growth factor 2 (GGF2) isoform of NRG‐1β improves cardiac function in rodents after myocardial infarction (MI), but its efficacy in a large animal model of cardiac injury has not been examined. We therefore sought to examine the effects of GGF2 on ventricular remodeling, cardiac function, and global transcription in post‐MI swine, as well as potential mechanisms for anti‐remodeling effects.Methods and ResultsMI was induced in anesthetized swine (n=23) by intracoronary balloon occlusion. At 1 week post‐MI, survivors (n=13) received GGF2 treatment (intravenous, biweekly for 4 weeks; n=8) or were untreated (n=5). At 5 weeks post‐MI, fractional shortening was higher (32.8% versus 25.3%, P=0.019), and left ventricular (LV) end‐diastolic dimension lower (4.5 versus 5.3 cm, P=0.003) in GGF2‐treated animals. Treatment altered expression of 528 genes, as measured by microarrays, including collagens, basal lamina components, and matricellular proteins. GGF2‐treated pigs exhibited improvements in LV cardiomyocyte mitochondria and intercalated disk structures and showed less fibrosis, altered matrix structure, and fewer myofibroblasts (myoFbs), based on trichrome staining, electron microscopy, and immunostaining. In vitro experiments with isolated murine and rat cardiac fibroblasts demonstrate that NRG‐1β reduces myoFbs, and suppresses TGFβ‐induced phospho‐SMAD3 as well as αSMA expression.ConclusionsThese results suggest that GGF2/NRG‐1β prevents adverse remodeling after injury in part via anti‐fibrotic effects in the heart.
AH is a rare complication of treatment with GP IIb/IIIa inhibitors. Its incidence ranged from 0.14% in patients treated with abciximab to 0.33% in those receiving eptifibatide. Compared to a control group, patients treated with GP IIb/IIIa inhibitors had a statistically increased risk for AH.
BackgroundCommon variable immune deficiency (CVID), one of the most common primary immunodeficiency diseases presents in adults, whereas X-linked agammaglobulinemia (XLA), an inherited humoral immunodeficiency, is usually diagnosed early in life after maternal Igs have waned. However, there have been several reports in the world literature in which individuals have either had a delay in onset of symptoms or have been misdiagnosed with CVID and then later found to have mutations in Bruton's tyrosine kinase (BTK) yielding a reclassification as adult-onset variants of XLA. The typical finding of absent B cells should suggest XLA rather than CVID and may be a sensitive test to detect this condition, leading to the more specific test (Btk mutational analysis). Further confirmation may be by mutational analyses.MethodsThe records of 2 patients were reviewed and appropriate clinical data collected. BTK mutational analysis was carried out to investigate the suspicion of adult-presentation of XLA. A review of the world literature on delayed diagnosis of XLA and mild or "leaky" phenotype was performed.Results2 patients previously diagnosed with CVID associated with virtual absence of CD19+ B cells were reclassified as having a delayed diagnosis and adult-presentation of XLA. Patient 1, a 64 yr old male with recurrent sinobronchial infections had a low level of serum IgG of 360 mg/dl (normal 736–1900), IgA <27 mg/dl (normal 90–474), and IgM <25 mg/dl (normal 50–415). Patient 2, a 46 yr old male with recurrent sinopulmonary infections had low IgG of 260 mg/dl, low IgA <16 mg/dl, and normal IgM. Mutational analysis of BTK was carried out in both patients and confirmed the diagnosis of XLAConclusionThese two cases represent an unusual adult-presentation of XLA, a humoral immunodeficiency usually diagnosed in childhood and the need to further investigate a suspicion of XLA in adult males with CVID particularly those associated with low to absent CD19+ B cells. A diagnosis of XLA can have significant implications including family counseling, detecting female carriers, and early intervention and treatment of affected male descendents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.