Adding steel fibers to a concrete matrix enhances the shear capacity of reinforced concrete beams. A comprehensive understanding of this phenomenon is essential to evaluate engineering designs accurately. The shear capacity of Steel Fiber Reinforced Concrete (SFRC) beams is affected by many parameters, such as the ratio of the shear span to the effective depth of the SFRC beam, the compressive strength of concrete, the longitudinal reinforcement ratio, volume fraction, aspect ratio, and the type of fibers. Therefore, to cover the influence of these parameters on the shear capacity of SFRC beams, 91 beams from previous studies, divided into 10 groups, were considered in the current study. Two approaches have been used to predict the shear capacity of SFRC beams. The first approach used 7 predicting equations derived from previous studies and the second one used finite element analysis (ANSYS software) to simulate the 91 beams. Despite the many approaches to simulate the structure elements, there is no reliable approach able to simulate satisfactorily 91 SFRC beams as this study does. The log file of ANSYS software was used to simulate and calculate the shear strength capacity of the beams. The results show a reasonable agreement with the experimental tests. The extracted results were much closer and more realistic than those obtained by the predicting equations. Also, the χ factor (squared value of experimental shear capacity to the predicted shear capacity) of the ANSYS software results is 97%, while the closest proposed equation gives 91%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.