Obesity is associated with increased cancer incidence and mortality. We have previously found that obesity in children is associated with a 50% increased recurrence of acute lymphoblastic leukemia (ALL) in high-risk patients. We have therefore developed novel in vivo and in vitro preclinical models to study the mechanism(s) of this association. Obesity increased relapse after monotherapy with vincristine (P = 0.03) in obese mice injected with syngeneic ALL cells. This occurred although the drug was dosed proportionally to body weight, equalizing blood and tissue drug levels. In coculture, 3T3-L1 adipocytes significantly impaired the antileukemia efficacy of vincristine, as well as three other chemotherapies (P < 0.05). Interestingly, this protection was independent of cell-cell contact, and it extended to human leukemia cell lines as well. Adipocytes prevented chemotherapy-induced apoptosis, and this was associated with increased expression of the two prosurvival signals Bcl-2 and Pim-2. These findings highlight the role of the adipocyte in fostering leukemia chemotherapy resistance, and may help explain the increased leukemia relapse rate in obese children and adults. Given the growing prevalence of obesity worldwide, these effects are likely to have increasing importance to cancer treatment.
Obesity is a significant risk factor for cancer. A link between obesity and a childhood cancer has been identified: obese children diagnosed with high-risk acute lymphoblastic leukemia (ALL) had a 50% greater risk of relapse than their lean counterparts. L-asparaginase (ASNase) is a first-line therapy for ALL that breaks down asparagine and glutamine, exploiting the fact that ALL cells are more dependent on these amino acids than other cells. In the present study, we investigated whether adipocytes, which produce significant quantities of glutamine, may counteract the effects of ASNase. In children being treated for high-risk ALL, obesity was not associated with altered plasma levels of asparagine or glutamine. However, glutamine synthetase was markedly increased in bone marrow adipocytes after induction chemotherapy. Obesity substantially impaired ASNase efficacy in mice transplanted with syngeneic ALL cells, and, like in humans, without affecting plasma asparagine or glutamine levels. In co-culture, adipocytes inhibited leukemic cell cytotoxicity induced by ASNase, and this protection was dependent on glutamine secretion. These findings suggest that adipocytes work in conjunction with other cells of the leukemia microenvironment to protect leukemia cells during ASNase treatment.
A deeper mechanistic understanding of tumour angiogenesis regulation is needed to improve current anti-angiogenic therapies. Here we present evidence from systems-based miRNA analyses of large-scale patient data sets along with in vitro and in vivo experiments that miR-192 is a key regulator of angiogenesis. The potent anti-angiogenic effect of miR-192 stems from its ability to globally downregulate angiogenic pathways in cancer cells through regulation of EGR1 and HOXB9. Low miR-192 expression in human tumours is predictive of poor clinical outcome in several cancer types. Using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes, we show that miR-192 delivery leads to inhibition of tumour angiogenesis in multiple ovarian and renal tumour models, resulting in tumour regression and growth inhibition. This anti-angiogenic and anti-tumour effect is more robust than that observed with an anti-VEGF antibody. Collectively, these data identify miR-192 as a central node in tumour angiogenesis and support the use of miR-192 in an anti-angiogenesis therapy.
Skin wound repair is essential for organismal survival and failure of which leads to non‐healing wounds, a leading health issue worldwide. However, mechanistic understanding of chronic wounds remains a major challenge due to lack of appropriate genetic mouse models. αSMA+ myofibroblasts, a unique class of dermal fibroblasts, are associated with cutaneous wound healing but their precise function remains unknown. We demonstrate that genetic depletion of αSMA+ myofibroblasts leads to pleiotropic wound healing defects, including lack of reepithelialization and granulation, dampened angiogenesis, and heightened hypoxia, hallmarks of chronic non‐healing wounds. Other wound‐associated FAP+ and FSP1+ fibroblasts do not exhibit such dominant functions. While type I collagen (COL1) expressing cells play a role in the repair process, COL1 produced by αSMA+ myofibroblasts is surprisingly dispensable for wound repair. In contrast, we show that β1 integrin from αSMA+ myofibroblasts, but not TGFβRII, is essential for wound healing, facilitating contractility, reepithelization, and vascularization. Collectively, our study provides evidence for the functions of myofibroblasts in β1 integrin‐mediated wound repair with potential implications for treating chronic non‐healing wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.