The present study investigated the application of support vector machine algorithms for predicting hydraulic parameters of a vertical drop equipped with horizontal screens. The study incorporated varying sizes of a rectangular channel. Horizontal screens, in addition to being able to dissipate the destructive energy of the flow, cause turbulence. The turbulence in turn supplies oxygen to the system through the promotion of air–water mixing. To achieve the objectives of the present study, 164 experiments were analyzed under the same experimental conditions using a support vector machine. The approach utilized dimensionless terms that included scenario 1: the relative energy consumption and scenario 2: the relative pool depth. The performance of the models was evaluated with statistical criteria (RMSE, R2 and KGE) and the best model was introduced for each of the parameters. RMSE is the root mean square error, R2 is the correlation coefficient and KGE is the Kling–Gupta criterion. The results of the support vector machine showed that for the first scenario, the third combination with R2 = 0.991, RMSE = 0.00565 and KGE = 0.998 for the training mode and R2 = 0.991, RMSE = 0.00489 and KGE = 0.991 for the testing mode were optimal. For the second scenario, the third combination with R2 = 0.988, RMSE = 0.0395 and KGE = 0.998 for the training mode and R2 = 0.988, RMSE = 0.0389 and KGE = 0.993 for the testing mode were selected. Finally, a sensitivity analysis was performed that showed that the yc/H and D/H parameters are the most effective parameters for predicting relative energy dissipation and relative pool depth, respectively.
In irrigation and drainage channels, vertical drops are generally used to transfer water from a higher elevation to a lower level. Downstream of these structures, measures are taken to prevent the destruction of the channel bed by the flow and reduce its destructive kinetic energy. In this study, the effect of use steps and grid dissipators on hydraulic characteristics regarding flow pattern, relative downstream depth, relative pool depth, and energy dissipation of a vertical drop was investigated by numerical simulation following the symmetry law. Two relative step heights and two grid dissipator cell sizes were used. The hydraulic model describes fully coupled three-dimensional flow with axial symmetry. For the simulation, critical depths ranging from 0.24 to 0.5 were considered. Values of low relative depth obtained from the numerical results are in satisfactory agreement with the laboratory data. The simultaneous use of step and grid dissipators increases the relative energy dissipation compared to a simple vertical drop and a vertical drop equipped with steps. By using the grid dissipators and the steps downstream of the vertical drop, the relative pool depth increases. Changing the pore size of the grid dissipators does not affect the relative depth of the pool. The simultaneous use of steps and grid dissipators reduces the downstream Froude number of the vertical drop from 3.83–5.20 to 1.46–2.00.
This study aims to provide a way to increase the energy dissipation of flow in the inclined drop with environmental and economic considerations. Eighty-one experiments were performed on three types of simple inclined drop and inclined drop equipped with hole and without hole fishway elements with a 200~600 L/min flow rate. In this study, the effect of using fishway elements on hydraulic parameters regarding flow pattern, energy dissipation, relative downstream depth, relative aeration length, relative length of the hydraulic jump, and downstream Froude number of an inclined drop was investigated through physical modeling following the symmetry law. The results showed that in all experimental models, with increasing the relative critical depth parameter, the energy dissipation values increase, and the downstream Froude number decreases. The parameters of relative downstream depth, relative length of a hydraulic jump, and relative aeration length also increase with increasing relative critical depth. On average, 88% of the flow energy dissipation increases with the design of the fishway elements on the structure compared to the simple drop. Model M7 (with holes fish elements) shows the highest energy dissipation, and Model M2 (without holes fish elements) has the highest flow aeration length and relative downstream water depth.
In this study, a nonstructural and eco-friendly solution has been used to reduce scouring downstream of screens. Upstream of the screen are stilling basins protected against scouring, but downstream locations are subjected to flow scouring. One of the challenges that the current research brings with it is the process of dispersing nanomaterials. In this research, to achieve its goals, three beds of channels with sedimentary materials, sedimentary materials plus clay, as well as sedimentary materials with a combination of clay and montmorillonite nanoclay have been used. The experimental results show the positive effect of clay and nanoclay on scour depth reduction downstream of the screens. The best performance occurs with the clay and montmorillonite clay mixture. The positive effect of clay and montmorillonite nanoclay mixture for scour length reduction is observed, and by utilizing this mixture, the length of scouring has decreased 33%. Furthermore, by adding clay and montmorillonite nanoclay mixture, the scour depth is reduced up to 39 and 46%, respectively. Utilizing clay and montmorillonite nanoclay mixture has a positive effect on scouring control. It could be very useful for cases such as rivers where bed protection with concrete is not possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.