Background & Aims
Very early onset inflammatory bowel diseases (VEOIBD), including infant disorders, are a diverse group of diseases found in children less than 6 years of age. They have been associated with several gene variants. We aimed to identify genes that cause VEOIBD.
Methods
We performed whole-exome sequencing of DNA from 1 infants with severe enterocolitis and her parents. Candidate gene mutations were validated in 40 pediatric patients and functional studies were carried out using intestinal samples and human intestinal cell lines.
Results
We identified compound heterozygote mutations in the tetratricopeptide repeat domain 7 (TTC7A) gene in an infant from non-consanguineous parents with severe exfoliative apoptotic enterocolitis; we also detected the mutations in 2 unrelated families, each with 2 affected siblings. TTC7A interacts with EFR3 homolog B (EFR3B) to regulate phosphatidylinositol 4-kinase (PI4KA) at the plasma membrane. Functional studies demonstrated that TTC7A is expressed in human enterocytes. The mutations we identified in TTC7A result in either mislocalization or reduced expression of TTC7A. PI4KA was found to co-immunoprecipitate with TTC7A; the identified TTC7A mutations reduced this binding. Knockdown of TTC7A in human intestinal-like cell lines reduced their adhesion, increased apoptosis, and decreased production of phosphatidylinositol 4-phosphate.
Conclusion
In a genetic analysis, we identified loss of function mutations in TTC7A in 5 infants with VEOIBD. Functional studies demonstrated that the mutations cause defects in enterocytes and T cells that lead to severe apoptotic enterocolitis. Defects in the PI4KA–TTC7A–EFR3B pathway are involved in the pathogenesis of VEOIBD.
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a critical regulator of cell death and inflammation, but its relevance for human disease pathogenesis remains elusive. Studies of monogenic disorders might provide critical insights into disease mechanisms and therapeutic targeting of RIPK1 for common diseases. Here, we report on eight patients from six unrelated pedigrees with biallelic loss-of-function mutations in RIPK1 presenting with primary immunodeficiency and/or intestinal inflammation. Mutations in RIPK1 were associated with reduced NF-κB activity, defective differentiation of T and B cells, increased inflammasome activity, and impaired response to TNFR1-mediated cell death in intestinal epithelial cells. The characterization of RIPK1-deficient patients highlights the essential role of RIPK1 in controlling human immune and intestinal homeostasis, and might have critical implications for therapies targeting RIPK1.
We identify SMARCD2 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily D, member 2), also known as BAF60b (BRG1/Brahma-associated factor 60b), as a critical regulator of myeloid differentiation in humans, mice, and zebrafish. Studying patients from three unrelated pedigrees characterized by neutropenia, specific granule deficiency, myelodysplasia with excess of blast cells, and various developmental aberrations, we identified three homozygous loss-of-function mutations in SMARCD2. Using mice and zebrafish as model systems, we showed that SMARCD2 controls early steps in the differentiation of myeloid–erythroid progenitor cells. In vitro, SMARCD2 interacts with the transcription factor CEBPε and controls expression of neutrophil proteins stored in specific granules. Defective expression of SMARCD2 leads to transcriptional and chromatin changes in acute myeloid leukemia (AML) human promyelocytic cells. In summary, SMARCD2 is a key factor controlling myelopoiesis and is a potential tumor suppressor in leukemia.
Here we show that MYSM1 deficiency is associated with developmental aberrations, progressive BMF with myelodysplastic features, and increased susceptibility to genotoxic stress. HSCT represents a curative therapy for patients with MYSM1 deficiency.
Leptin, the adipocyte derived hormone, has a pivotal role in regulating energy homeostasis and appetite. beyond this essential role in bodyweight control, leptin also regulates the immune responses. Leptin has pro-inflammatory effects on t cell populations, shifting the t helper balance towards a tH1 phenotype, through induction of pro-inflammatory cytokines and stimulation of macrophage and natural killer cell function. Acute starvation reduces serum leptin levels, resulting in an impaired cellular immune response. the tH1 pro-inflammatory immune response, a homeostatic response mediated by the low leptin levels, is also impaired during starvation. Leptin-deficient or leptin receptor mutant mice are protected against the development of several inflammatory or various t cell-dependent autoimmune diseases. therefore, leptin appears to have a central role in the immune response and low leptin levels may protect against autoimmune disease. Here we review the role of leptin in the immune responses, with emphasis on autoimmune diseases. We will also discuss the application of leptin antagonist therapy for prevention and treatment of immunity related disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.