One of the fundamental principles underlying tissue engineering approaches is that newly formed tissue must maintain sufficient vascularization to support its growth. Efforts to induce vascular growth into tissue-engineered scaffolds have recently been dedicated to developing novel strategies to deliver specific biological factors that direct the recruitment of endothelial cell (EC) progenitors and their differentiation. The challenge, however, lies in orchestration of the cells, appropriate biological factors, and optimal factor doses. This study reports an approach as a step forward to resolving this dilemma by combining an
ex vivo
gene transfer strategy and EC transplantation. The utility of this approach was evaluated by using 3D poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for bone tissue engineering applications. Our goal was achieved by isolation and transfection of adipose-derived stromal cells (ADSCs) with adenovirus encoding the cDNA of VEGF. We demonstrated that the combination of VEGF releasing ADSCs and ECs results in marked vascular growth within PLAGA scaffolds. We thereby delineate the potential of ADSCs to promote vascular growth into biomaterials.
Despite their indisputable clinical value, current tissue engineering strategies face major challenges in recapitulating the natural nano-structural and morphological features of native bone. The aim of this study is to take a step forward by developing a porous scaffold with appropriate mechanical strength and controllable surface roughness for bone repair. This was accomplished by homogenous dispersion of carbon nanotubes (CNTs) in a poly(lactide-co-glycolide) (PLGA) solution followed by a solvent casting/particulate leaching scaffold fabrication. Our results demonstrated that CNT/PLGA composite scaffolds possessed a significantly higher mechanical strength as compared to PLGA scaffolds. The incorporation of CNTs led to an enhanced surface roughness and resulted in an increase in the attachment and proliferation of MC3T3-E1 osteoblasts. Most interestingly, the in vitro osteogenesis studies demonstrated a significantly higher rate of differentiation on CNT/PLGA scaffolds compared to the control PLGA group. These results all together demonstrate the potential of CNT/PLGA scaffolds for bone tissue engineering as they possess the combined effects of mechanical strength and osteogenicity.
Resveratrol (RSV) and nicotinamide (NAM) have garnered considerable attention due to their anti-inflammatory and anti-aging properties. NAM is a transient inhibitor of class III histone deacetylase SIRTs (silent mating type information regulation 2 homologs) and SIRT1 is an inhibitor of poly-ADP-ribose polymerase-1 (PARP1). The debate on the relationship between RSV and SIRT1 has precluded the use of RSV as a therapeutic drug. Recent work demonstrated that RSV facilitates tyrosyl-tRNA synthetase (TyrRS)-dependent activation of PARP1. Moreover, treatment with NAM is sufficient to facilitate the nuclear localization of TyrRS that activates PARP1. RSV and NAM have emerged as potent
agonists
of PARP1 through inhibition of SIRT1. In this study, we evaluated the effects of RSV and NAM on pro-inflammatory macrophages. Our results demonstrate that treatment with either RSV or NAM attenuates the expression of pro-inflammatory markers. Strikingly, the combination of RSV with NAM, exerts additive effects on PARP1 activation. Consistently, treatment with PARP1 inhibitor antagonized the anti-inflammatory effect of both RSV and NAM. For the first time, we report the ability of NAM to augment PARP1 activation, induced by RSV, and its associated anti-inflammatory effects mediated through the induction of BCL6 with the concomitant down regulation of COX-2.
A wide variety of environmental factors including physical and biochemical signals are responsible for stem cell behavior and function. In particular, matrix elasticity and cell shape have been shown to determine stem cell function, yet little is known about the interplay between how these physical cues control cell differentiation. For the first time, by using ultraviolet (UV) lithography to pattern poly(ethylene) glycol (PEG) hydrogels we are able to manufacture microenvironments capable of parsing the effects of matrix elasticity, cell shape, and cell size in order to explore the relationship between matrix elasticity and cell shape in mesenchymal stem cell (MSC) lineage commitment. Our data shows that cells cultured on 1,000 μm2 circles, squares, and rectangles were primarily adipogenic lineage regardless of matrix elasticity, while cells cultured on 2,500 and 5,000 μm2 shapes more heavily depended on shape and elasticity for lineage specification. We further went on to characterize how modifying the cell cytoskeleton through pharmacological inhibitors can modify cell behavior. By showing MSC lineage commitment relationships due to physical signals, this study highlights the importance of cell shape and matrix elasticity in further understanding stem cell behavior for future tissue engineering strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.