A study of the group properties of galaxies in our immediate neighborhood provides a singular opportunity to observationally constrain the halo mass function, a fundamental characterization of galaxy formation. Detailed studies of individual groups have provided the coefficients of scaling relations between a proxy for the virial radius, velocity dispersion, and mass that usefully allows groups to be defined over the range 10 10 −10 15 M ⊙ . At a second hierarchical level, associations are defined as regions around collapsed halos extending to the zero velocity surface at the decoupling from cosmic expansion. The most remarkable result of the study emerges from the construction of the halo mass function from the sample. At ∼ 10 12 M ⊙ there is a jog from the expectation Sheth-Tormen function, such that halo counts drop by a factor ∼ 3 in all lower mass bins.
We have used new deep observations of the Coma cluster from Galaxy Evolution Explorer to visually identify 13 star-forming galaxies with asymmetric morphologies in the ultraviolet (UV). Aided by wide-field optical broad-band and Hα imaging, we interpret the asymmetric features as being due to star formation within gas stripped from the galaxies by interaction with the cluster environment. The selected objects display a range of structures from broad fanshaped systems of filaments and knots ('jellyfish') to narrower and smoother tails extending up to 100 kpc in length. Some of the features have been discussed previously in the literature, while others are newly identified here. We assess the ensemble properties of the sample. The candidate stripping events are located closer to the cluster centre than other star-forming galaxies; their radial distribution is more similar to that of all cluster members, dominated by passive galaxies. The fraction of blue galaxies which are undergoing stripping falls from 40 per cent in the central 500 kpc to less than 5 per cent beyond 1 Mpc. We find that tails pointing away from (i.e. galaxies moving towards) the cluster centre are strongly favoured (11/13 cases). From the small number of 'outgoing' galaxies with stripping signatures, we conclude that the stripping events occur primarily on first passage towards the cluster centre, and are short-lived compared to the cluster crossing time. Using galaxy infall trajectories extracted from a cosmological simulation, we find that the observed fraction of blue galaxies undergoing stripping can be reproduced if the events are triggered at a threshold radius of ∼1 Mpc and detectable for ∼500 Myr. Hubble Space Telescope images are available for two galaxies from our sample and reveal compact blue knots coincident with UV and Hα emission, apparently forming stars within the stripped material. Our results confirm that stripping of gas from infalling galaxies, and associated star formation in the stripped material, is a widespread phenomenon in rich clusters. Deep UV imaging of additional clusters is a promising route to constructing a statistically powerful sample of stripping events and constraining models for the truncation of star formation in clusters.
PHANGS-HST is an ultraviolet-optical imaging survey of 38 spiral galaxies within ∼20 Mpc. Combined with the PHANGS-ALMA, PHANGS-MUSE surveys and other multiwavelength data, the dataset will provide an unprecedented look into the connections between young stars, H ii regions, and cold molecular gas in these nearby star-forming galaxies. Accurate distances are needed to transform measured observables into physical parameters (e.g., brightness to luminosity, angular to physical sizes of molecular clouds, star clusters and associations). PHANGS-HST has obtained parallel ACS imaging of the galaxy halos in the F606W and F814W bands. Where possible, we use these parallel fields to derive tip of the red giant branch (TRGB) distances to these galaxies. In this paper, we present TRGB distances for 11 galaxies from ∼4 to ∼15 Mpc, based on the first year of PHANGS-HST observations. Five of these represent the first published TRGB distance measurements (IC 5332, NGC 2835, NGC 4298, NGC 4321, and NGC 4328), and eight of which are the best available distances to these targets. We also provide a compilation of distances for the 118 galaxies in the full PHANGS sample, which have been adopted for the first PHANGS-ALMA public data release.
This study is a part of the Cosmicflows-4 project with the aim of measuring the distances of more than ∼10,000 spiral galaxies in the local universe up to ∼15,000 km s 1 . New H I line width information has come primarily from the Arecibo Legacy Fast ALFA Survey. Photometry of our sample galaxies has been carried out in optical (SDSS u, g, r, i, and z) and infrared (WISE W1 and W2) bands. Inclinations have been determined using an online graphical interface accessible to a collaboration of citizen scientists. Galaxy distances are measured based on the correlation between the rotation rate of spirals and their absolute luminosity, known as the Tully-Fisher relation (TFR). In this study, we present the calibration of the TFR using a subsample of ∼600 spirals located in 20 galaxy clusters. Correlations among such observables as color, surface brightness, and relative H I content are explored in an attempt to reduce the scatter about the TFR with the goal of obtaining more accurate distances. A preliminary determination of the Hubble constant from the distances and velocities of the calibrator clusters is H 0 =76.0±1.1(stat.)±2.3(sys.)km s −1 Mpc −1 .
The Extragalactic Distance Database (EDD) was created as a repository for high-quality, redshift-independent distances. A key component of EDD is the Color–Magnitude Diagrams/Tip of the Red Giant Branch (CMDs/TRGB) catalog, which provides information on the stellar content of nearby galaxies observed with the Hubble Space Telescope (HST). Here we provide a decadal update to this catalog, which has now doubled in size to over 500 galaxies. We highlight the additions to our data reduction and analysis techniques and provide examples of the science that has been made possible with this large data set. We find the TRGB to be a reliable measure for distance, and we aim to extend its distance coverage with HST to every galaxy within 10 Mpc. In the near future, the combination of the James Webb Space Telescope and the Nancy Grace Roman Space Telescope will dramatically increase the number of targets within our grasp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.