This paper presents a new adaptive pushover procedure to account for the effect of higher modes in order to accurately estimate the seismic response of bridges. The effect of higher modes is considered by introducing a minimum value for the total effective modal mass. The proposed method employs enough number of modes to ensure that the defined total effective modal mass participates in all increments of the pushover loading. An adaptive demand curve is also developed for assessment of the seismic demand. The efficiency and robustness of the proposed method are demonstrated by conducting a parametric study. The analysis includes 18 four-span integral bridges with various heights of piers. The inelastic response history analysis is employed as reference solution in this study. Numerical results indicate excellent accuracy of the proposed method in assessment of the seismic response. For most bridges investigated in this study, the difference between the estimated response of the proposed method and the inelastic response history analysis is less than 25% for displacements and 10% for internal forces. This indicates a very good accuracy compared to available pushover procedures in the literature. The proposed method is therefore recommended to be applied to the seismic performance evaluation of integral bridges for engineering applications.
In recent years, a lot of algorithms have been proposed for the classification of the documents. Most of works done have been on English language and recently there have been works on some languages such as Chinese, Arabic, etc. In some cases, there were classifications on the Persian texts which have become essays or online projects.
In this research, a simulation–optimization (S/O) model is used in order to estimate aquifer parameters on two aquifers. In this model, meshless local Petrov–Galerkin (MLPG) is used for simulation purpose and modified teaching–learning-based optimization (MTLBO) algorithm is engaged as optimization model. Linking these two powerful models generates a S/O model named MLPG-MTLBO. The proposed model is applied on two aquifers: a standard and a real field aquifer. In standard aquifer, parameters are only transmissivity coefficients in x and y direction for three zones. The acquired results by MLPG-MTLBO are really close to true values. This fact presents the power of MLPG-MTLBO inverse model. Therefore, it is applied on field aquifer. Unconfined aquifer of Birjand recognized as real case study. Parameters which are needed to be estimated are specific yields and hydraulic conductivity coefficients. These parameters are computed by MLPG-MTLBO and entered to the groundwater flow model. The achieved groundwater table compared with observation data and RMSE is calculated. RMSE value is 0.356 m; however, this error criterion for MLPG and FDM is 0.757 m and 1.197 m, respectively. This means that estimation is precise and makes the RMSE to reduce from 0.757 to 0.356 m, and also, MLPG-MTLBO is an accurate model for this aim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.