Urban studies related to previous pandemics and impacts on cities focused on vulnerable categories including poor and marginalized groups. We continue this tradition and analyze unemployment outcomes in a context of a multi-dimensional social disadvantage that is unfolding during the ongoing public health crisis. For this, we first propose an approach to identify communities by social disadvantage status captured by several key metrics. Second, we apply this methodology in the study of the effect of social disadvantage on unemployment during the COVID-19 and measure the COVID-19-related economic impact using the most recent data on unemployment. The study focuses upon vulnerable communities in in the southeastern US (Tennessee) with a concentration of high social vulnerability and rural communities. While all communities initially experienced the impact that was both sudden and severe, communities that had lower social disadvantage pre-COVID were much more likely to start resuming economic activities earlier than communities that were already vulnerable pre-COVID due to high social disadvantage with further implications upon community well-being. The impact of social disadvantage grew stronger post-COVID compared with the pre-pandemic period. In addition, we investigate worker characteristics associated with adverse labor market outcomes during the later stage of the current economic recession. We show that some socio-demographic groups have a systematically higher likelihood of being unemployed. Compared with the earlier stages, racial membership, poverty and loss of employment go hand in hand, while ethnic membership (Hispanics) and younger male workers are not associated with higher unemployment. Overall, the study contributes to a growing contemporaneous research on the consequences of the COVID-19 recession. Motivated by the lack of the research on the spatial aspect of the COVID-19-caused economic recession and its economic impacts upon the vulnerable communities during the later stages, we further contribute to the research gap.
The urban expansion from the city center to the suburb and beyond is indicated by Shannon entropy, a robust and versatile measure of sprawl. However, the metropolitan regionwide entropy masks the morphology of land cover and land use consequential to urban expansion within the city-region. To surmount the limitation, we focus on the block-group, which is a US census defined socio-spatial unit that identifies the metropolitan region’s development pattern structurally, forming tracts that comprise neighborhoods. The concentration and dispersion of land use and land cover by block-group reveals a North American metropolitan region’s commonly known but rarely measured spatial structure of its urban and suburban sprawl. We use parcel data from county assessor of property (GIS) and land cover pixel data from the National Land Cover Data (NLCD) to compute block-group land-use and land-cover entropy. The change in block group entropy over a decade indicates whether the city- region’s land use and land cover transition to a concentrated or dispersed pattern. Furthermore, we test a hypothesis that blight correlates with sprawl. Blight and sprawl are among the key factors that plague the metropolitan region. We determine the correlations with household income as well as (block group) distance from the city center. It turns out, blight is among the universally held distance-decay phenomena. The share of the block group’s blighted properties decays (nonlinearly) with distance from the city center. Highlights for public administration, management and planning: • The metropolitan region’s outward growth is highlighted by mapping the changing morphology of the block group within the city-region. • The block group entropy is computed with land use (parcel) and land cover (pixel) data. • The block group entropy change indicates the pattern of the land use and land cover transition with concentration or dispersion. • We test the hypothesis that blight correlates with sprawl with statistical models. • The block group’s blighted properties decrease (nonlinearly) with distance from the city center.
While cellular automata (CA) are considered an effective algorithm to model urban growth, their precise calibration can be challenging. The Shannon relative index (SRI) is an indicator of urban sprawl accounting for dispersion or concentration of built‐up/non‐built‐up areas. This study uses SRIs directly in the calibration of CA as patterns, applying a genetic algorithm (GA). Moreover, the kappa coefficient is used in the calibration process. CA was calibrated using data for 2001 and 2006 and validated using 2011 data to model urban growth in Shelby County, TN. Results indicate that the kappa coefficient achieves the highest value using the proposed method (89.48%) compared with a GA without patterns (86.15%, which underestimates 32.22 km2) or logistic regression (85.83%, which underestimates 36.76 km2). A more precise calibration of urban growth using the proposed method helps city planners to provide more realistic models for the future of the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.