In this study, the large amplitude free vibration of nanobeams based on the modified couple stress theory was developed by using Total Lagrangian finite element formulation. In this study, Timoshenko beam theory has been used in free vibration analysis of nanobeams. Minimal kinematic assumptions have been used to model nanobeams. With this model, free vibration of nanobeams with small to large amplitude and with arbitrary boundary conditions can be analyzed. The numerical results obtained for free vibration based on the modified couple stress theory with small amplitude and the results obtained for free vibration with large amplitude without considering the modified couple stress theory are in good agreement with the similar results reported in previous research. Effects of the dimensionless length scale parameter, slenderness ratio, vibration amplitude and different boundary conditions on the nonlinear frequency ratio of nanobeams have been investigated. The results show the importance of considering nonlinear and size effects in the free vibration analysis of nanobeams with large amplitude.
-Mistuning in cyclic symmetric systems increases severely the forced response of system and splits the modes. This paper concerns with nonlinear behavior of mistuned cyclic systems. A nonlinear, mistuned model based on the method of multiple scales is proposed and formulated in which nonlinearity and mistuning parameter is assumed to be in of low order. Next, two mistuned systems were considered and solved by the multiple scale technique. Numerical results demonstrate that mistuning can lead to repeating and scattering of jump phenomena during the excitation frequency whereas in tuned cyclic system it occurs simultaneously (synchronously).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.