Brain stimulation techniques are important in both basic and clinical studies. Majority of well-known brain stimulating techniques have low spatial resolution or entail invasive processes. Low intensity focused ultrasound (LIFU) seems to be a proper candidate for dealing with such deficiencies. This review recapitulates studies which explored the effects of LIFU on brain structures and its function, in both research and clinical areas.Although the mechanism of LIFU action is still unclear, its different effects from molecular level up to behavioral level can be explored in animal and human brain. It can also be coupled with brain imaging assessments in future research.
Neurons in some sensory areas reflect the content of working memory (WM) in their spiking activity. However, this spiking activity is seldom related to behavioral performance. We studied the responses of inferotemporal (IT) neurons, which exhibit object-selective activity, along with Frontal Eye Field (FEF) neurons, which exhibit spatially selective activity, during the delay period of an object WM task. Unlike the spiking activity and local field potentials (LFPs) within these areas, which were poor predictors of behavioral performance, the phase-locking of IT spikes and LFPs with the beta band of FEF LFPs robustly predicted successful WM maintenance. In addition, IT neurons exhibited greater object-selective persistent activity when their spikes were locked to the phase of FEF LFPs. These results reveal that the coordination between prefrontal and temporal cortex predicts the successful maintenance of visual information during WM.
Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.
Due to the significantly drastic progress and improvement in neurophysiological recording technologies, neuroscientists have faced various complexities dealing with unstructured large-scale neural data. In the neuroscience community, these complexities could create serious bottlenecks in storing, sharing, and processing neural datasets. In this article, we developed a distributed high-performance computing (HPC) framework called `Big neuronal data framework' (BNDF), to overcome these complexities. BNDF is based on open-source big data frameworks, Hadoop and Spark providing a flexible and scalable structure. We examined BNDF on three different large-scale electrophysiological recording datasets from nonhuman primate’s brains. Our results exhibited faster runtimes with scalability due to the distributed nature of BNDF. We compared BNDF results to a widely used platform like MATLAB in an equitable computational resource. Compared with other similar methods, using BNDF provides more than five times faster performance in spike sorting as a usual neuroscience application.
Neurons in some sensory areas reflect the content of working memory (WM) in their spiking activity.However, this spiking activity is seldom related to behavioral performance. We studied the responses of inferotemporal (IT) neurons, which exhibit object-selective activity, along with Frontal Eye Field (FEF) neurons, which exhibit spatially-selective activity, during the delay period of an object WM task. Unlike the spiking activity and local field potentials (LFPs) within these areas, which were poor predictors of behavioral performance, the phase-locking of IT spikes and LFPs with the beta band of FEF LFPs robustly predicted successful WM maintenance. In addition, IT neurons exhibited greater object-selective persistent activity when their spikes were locked to the phase of FEF LFPs. These results demonstrate a key role of coordination between prefrontal and temporal cortex in the successful maintenance of visual information during WM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.