In this paper we investigate the use of deep neural networks (DNNs) for a small footprint text-dependent speaker verification task. At development stage, a DNN is trained to classify speakers at the framelevel. During speaker enrollment, the trained DNN is used to extract speaker specific features from the last hidden layer. The average of these speaker features, or d-vector, is taken as the speaker model. At evaluation stage, a d-vector is extracted for each utterance and compared to the enrolled speaker model to make a verification decision. Experimental results show the DNN based speaker verification system achieves good performance compared to a popular i-vector system on a small footprint text-dependent speaker verification task. In addition, the DNN based system is more robust to additive noise and outperforms the i-vector system at low False Rejection operating points. Finally the combined system outperforms the i-vector system by 14% and 25% relative in equal error rate (EER) for clean and noisy conditions respectively.Index Terms-Deep neural networks, speaker verification.
This paper describes the technical and system building advances made to the Google Home multichannel speech recognition system, which was launched in November 2016. Technical advances include an adaptive dereverberation frontend, the use of neural network models that do multichannel processing jointly with acoustic modeling, and Grid-LSTMs to model frequency variations. On the system level, improvements include adapting the model using Google Home specific data. We present results on a variety of multichannel sets. The combination of technical and system advances result in a reduction of WER of 8-28% relative compared to the current production system.
This paper proposes and evaluates the hybrid autoregressive transducer (HAT) model, a time-synchronous encoderdecoder model that preserves the modularity of conventional automatic speech recognition systems. The HAT model provides a way to measure the quality of the internal language model that can be used to decide whether inference with an external language model is beneficial or not. This article also presents a finite context version of the HAT model that addresses the exposure bias problem and significantly simplifies the overall training and inference. We evaluate our proposed model on a large-scale voice search task. Our experiments show significant improvements in WER compared to the state-of-the-art approaches .Index Terms-ASR, Encoder-decoder, Beam Search T t=1 P ( Y t =ỹ t |X). Finally P (Y |X) is calculated by marginalizing over the alignment posteriors with Eq 2.
This article describes a density ratio approach to integrating external Language Models (LMs) into end-to-end models for Automatic Speech Recognition (ASR). Applied to a Recurrent Neural Network Transducer (RNN-T) ASR model trained on a given domain, a matched in-domain RNN-LM, and a target domain RNN-LM, the proposed method uses Bayes' Rule to define RNN-T posteriors for the target domain, in a manner directly analogous to the classic hybrid model for ASR based on Deep Neural Networks (DNNs) or LSTMs in the Hidden Markov Model (HMM) framework
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.