In this work, a simple thermal method was used to synthesize carbon dots from citric acid and glycine precursors. It was found that Hg(II) ions can selectively quench the fluorescence emission of these carbon dots. Subsequently, a sensor was designed and optimized for the determination of Hg(II) ions. The limit of detection and quantification of the sensor were found to be 38 and 112 ppb, respectively. The sensor showed good selectivity toward Hg(II) ions and was successfully used for the determination of Hg(II) ions in mineral water samples.
Hexavalent chromium, Cr(VI), is a toxic and carcinogenic ion that poses significant risks toward human health and the environment. Due to its extensive industrial use and high water solubility, Cr(VI) can easily contaminate drinking water sources. Therefore, it is essential to develop methods to detect Cr(VI) in water samples. Recently, carbon quantum dots – being biocompatible, easy to synthesize, and cost‐effective fluorophores – have been successfully applied for the determination of different heavy metal ions. In this study, arginine‐derived carbon nanoparticles were synthesized using a solvent‐free one‐pot thermal method. These carbon nanoparticles were characterized using transmission electron microscopy, dynamic light scattering analysis, infrared spectroscopy, ultraviolet–visible (UV–vis) light spectroscopy, fluorescence spectroscopy, and CHNO elemental analysis before being used to design a sensor for Cr(VI). The sensor's signal was optimized and the arginine‐derived carbon nanoparticle‐based Cr(VI) determination method was shown to have a limit of detection of 18 nM, a limit of quantification of 60 nM, and a linear response range of 0.06–100 μM. The sensor's selectivity toward Cr(VI) was studied and a potential interfering ion was identified and dealt with. Finally, the sensor was successfully applied for the determination of Cr(VI) in tap water and mineral water samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.