In this study, the biosynthesis of zinc oxide nanoparticles using Aspergillus niger (A/ZnO-NPs) is described. These particles have been characterized by UV–Vis spectrum analysis, x-ray powder diffraction, field emission scanning electron microscopy, and transmission electron microscopy. To use this biosynthesized nanoparticle as an antiproliferative and antimicrobial agent, the IC50 value against the breast cancer cell line and inhibition zone against Escherichia coli were used to optimize the effect of two processing factors including dose of filtrate fungi cell and temperature. The biosynthesized A/ZnO-NPs had an absorbance band at 320 nm and spherical shapes. The mean particles size was 35 nm. RSM (response surface methodology) was utilized to investigate the outcome responses. The Model F-value of 12.21 and 7.29 implies that the model was significant for both responses. The contour plot against inhibition zone for temperature and dose showed that if the dose increases from 3.8 to 17.2 µg/mL, the inhibition zone increases up to 35 mm. As an alternative to chemical and/or physical methods, biosynthesizing zinc oxide NPs through fungi extracts can serve as a more facile and eco-friendly strategy. Additionally, for optimization of the processes, the outcome responses in the biomedical available test can be used in the synthesis of ZnO-NPs that are utilized for large-scale production in various medical applications.
Background: Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen causing a wide range of human infections. The organism is resistant to a wide range of antibiotics. The purpose of this study was to investigate the effect of AgNPs on pyocyanin pigment production of P. aeruginosa bacteria isolated from clinical specimens.
Methods: In this study, 15 clinical isolates of P. aeruginosa were collected from different specimens of hospitalized patients. P. aeruginosa was detected by biochemical and molecular (detection of pbo1 gene by colony PCR method) methods and the MIC and MBC of AgNPs were determined by agar dilution method. Inhibition of P. aeruginosa pyocyanin production at AgNPs concentrations of 0, 0.3, 0.5, 1 and 1.5 mg/ml of was studied with OD of 520 nm.
Results: The mean MIC and MBC of AgNPs were 1.229 and 1.687 mg/ml, respectively. Pyocyanin production was investigated for all isolates at different concentrations of nanoparticles, and their comparison showed that with increasing nanoparticle concentration, pyocyanin production significantly decreased (p<0.05).
Conclusion: According to the results of this study, AgNPs had an inhibitory effect on P. aeruginosa and its pigment production and with increasing nanoparticles concentration, pigment production decreased; therefore, it seems that the nanoparticles can be used to treat and prevent diseases caused by P. aeruginosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.