Attaching a piezoelectric transducer to a vibrating structure, and shunting it with an electric circuit, gives rise to different passive, semi-passive, and semi-active control techniques. This paper attempts to review the research related to structural vibration control, via passive, semi-passive, and semi-active control methods. First, the existing electromechanical modeling is reviewed, along with the modeling methods. These range from lumped parameters, to distributed parameters modeling of piezostructural systems shunted by electrical networks. Vibration control laws are then discussed, covering passive, semi-passive, and semi-active control techniques, which are classified according to whether external power is supplied to the piezoelectric transducers, or not. Emphasis is placed on recent articles covering semi-passive and semi-active control techniques, based upon switched shunt circuits. This review provides the necessary background material for researchers interested in the growing field of vibration damping and control, via shunted piezostructural systems.
Wind tunnels usually use long cantilever stings to support aerodynamic models in order to reduce support system flow interference on experimental data. However, such support systems are a potential source of vibration problems which limit the test envelope and affect data quality due to the inherently low structural damping of the systems. When exposed to tunnel flow, turbulence and model flow separation excite resonant Eigenmodes of a sting structure causing large vibrations due to low damping. This paper details the development and experimental evaluation of an active damping system using piezoelectric devices with balance signal feedback both in a lab and a low speed acoustic wind tunnel and presents the control algorithm verification tests with a simple cantilever beam. It is shown that the active damper, controlled separately by both PID and BP neural network, has effectively attenuated the vibration. For sting mode only, 95% reduction of displacement response under exciter stimulation and 98% energy elimination of sting mode frequency have been achieved.
Synchronized switch damping (SSD) techniques using piezoelectric materials have been used by different researchers for many years for the structure vibration control. In these techniques, a piezoelectric patch is bonded on or embedded into the vibrating structure and connected to or disconnected from a network of electrical components through an electronic switch, which is controlled by a digital signal processor (DSP), in synchronous with the structure motion. Recently, Self-powered SSD techniques have emerged in which the DSP is replaced by a low pass filter, thus making the whole system self-powered. The control performance of the previously used Self-powered SSD techniques heavily relied on the electrical quality factor of the shunt circuit, thus limiting their control performance as the electrical quality factor could not be increased beyond certain limit. However, in order to bypass the influence of the electrical quality factor on the control performance, a new Self-powered SSD technique has been proposed in this paper in which the inductance in the previous Self-powered SSD techniques has been replaced with a negative capacitance thus making the whole circuit capacitive without resonance. However, it is found that the voltage on the piezoelectric patch can still be inverted. In order to access the control performance of the proposed technique in comparison with the previous Self-powered SSD techniques, experiments are performed on a cantilever beam subjected to both single mode and multimode excitations. Keeping the value of negative capacitance slightly greater than the inherent capacitance of the piezoelectric patch gave the optimum damping performance. Experiments results confirmed the effectiveness of the proposed technique as compared to the previous SSD techniques.
Synchronized switch damping (SSD) techniques have recently been developed for structural vibration control using piezoelectric materials. In these techniques, piezoelectric materials are bonded on the vibrating structure and shunted by a network of electrical elements. These piezoelectric materials are switched according to the amplitude of the excitation force to damp vibration. This paper presents a new SSD technique called 'synchronized switch damping on negative capacitance and adaptive voltage sources' (SSDNCAV). The technique combines the phenomenon of capacitance transient charging and electrical resonance to effectively dampen the structural vibration. Also, the problem of stability observed in the previous SSD techniques is effectively addressed by adapting the voltage on the piezoelectric patch according to the vibration amplitude of the structure. Analytical expressions of vibration attenuation at the resonance frequency are derived, and the effectiveness of this new technique is demonstrated, for the control of a resonant cantilever beam with bonded piezoelectric patches, by comparing with SSDI, SSDVenh, and SSDNC techniques. Theoretical predictions and experimental results show the remarkable vibration damping capability of SSDNCAV technique, which was better than the previous SSD techniques. The broadband vibration control capabilities of SSDNCAV technique are also demonstrated, which exceed those of previous SSD techniques.
Synchronized switch damping (SSD) is a structural vibration control technique in which a piezoelectric patch attached to or embedded into the structure is connected to or disconnected from the shunt circuit in order to dissipate the vibration energy of the host structure. The switching process is performed by a digital signal processor (DSP) which detects the displacement extrema and generates a command to operate the switch in synchronous with the structure motion. Recently, autonomous SSD techniques have emerged in which the work of DSP is taken up by a low pass filter, thus making the whole system autonomous or self-powered. The control performance of the previous autonomous SSD techniques heavily relied on the electrical quality factor of the shunt circuit which limited their damping performance. Thus in order to reduce the influence of the electrical quality factor on the damping performance, a new autonomous SSD technique is proposed in this paper in which a negative capacitor is used along with the inductor in the shunt circuit. Only a negative capacitor could also be used instead of inductor but it caused saturation of negative capacitor in the absence of an inductor due to high current generated during the switching process. The presence of inductor in the shunt circuit of negative capacitor limits the amount of current supplied by the negative capacitance, thus improving the damping performance. In order to judge the control performance of proposed autonomous SSDNCI, a comparison is made between the autonomous SSDI, autonomous SSDNC and autonomous SSDNCI techniques for the control of an aluminum cantilever beam subjected to both single mode and multimode excitation. A value of negative capacitance slightly greater than the piezoelectric patch capacitance gave the optimum damping results. Experiment results confirmed the effectiveness of the proposed autonomous SSDNCI technique as compared to the previous techniques. Some limitations and drawbacks of the proposed technique are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.