NMDA receptor agonists have been used for many years to generate animal models of polymicrogyria, a malformation of cortical development. Fry et al. identify de novo GRIN1 mutations in eleven patients with severe bilateral polymicrogyria. Polymicrogyria-associated GRIN1 mutations cluster in specific protein domains and significantly alter NMDA receptor function.
Neurodevelopmental disorders, including autism spectrum disorder, have complex polygenic etiologies. Single-gene mutations in patients can help define genetic factors and molecular mechanisms underlying neurodevelopmental disorders. Here we describe individuals with monogenic heterozygous microdeletions in ANKS1B , a predicted risk gene for autism and neuropsychiatric diseases. Affected individuals present with a spectrum of neurodevelopmental phenotypes, including autism, attention-deficit hyperactivity disorder, and speech and motor deficits. Neurons generated from patient-derived induced pluripotent stem cells demonstrate loss of the ANKS1B -encoded protein AIDA-1, a brain-specific protein highly enriched at neuronal synapses. A transgenic mouse model of Anks1b haploinsufficiency recapitulates a range of patient phenotypes, including social deficits, hyperactivity, and sensorimotor dysfunction. Identification of the AIDA-1 interactome using quantitative proteomics reveals protein networks involved in synaptic function and the etiology of neurodevelopmental disorders. Our findings formalize a link between the synaptic protein AIDA-1 and a rare, previously undefined genetic disease we term ANKS1B haploinsufficiency syndrome.
The transcriptional regulator WW domain-containing oxidoreductase (WWOX) is a key player in a number of cellular and biological processes including tumor suppression. Recent evidence has emerged associating WWOX with non-cancer disorders. Patients harboring pathogenic germline bi-allelic WWOX variants have been described with the rare devastating neurological syndromes autosomal recessive spinocerebellar ataxia 12 (SCAR12) (6 patients) and WWOX-related epileptic encephalopathy (DEE28 or WOREE syndrome) (56 patients). Individuals with these syndromes present with a highly heterogenous clinical spectrum, the most common clinical symptoms being severe epileptic encephalopathy and profound global developmental delay. Knowledge of the underlying pathophysiology of these syndromes, the range of variants of the WWOX gene and its genotype-phenotype correlations is limited, hampering therapeutic efforts. Therefore, there is a critical need to identify and consolidate all the reported variants in WWOX to distinguish between disease-causing alleles and their associated severity, and benign variants, with the aim of improving diagnosis and increasing therapeutic efforts. Here, we provide a comprehensive review of the literature on WWOX, and analyze the pathogenic variants from published and unpublished reports by collecting entries from the ClinVar, DECIPHER, VarSome, and PubMed databases to generate the largest dataset of WWOX pathogenic variants. We estimate the correlation between variant type and patient phenotype, and delineate the impact of each variant, and used GnomAD to cross reference these variants found in the general population. From these searches, we generated the largest published cohort of WWOX individuals. We conclude with a discussion on potential personalized medicine approaches to tackle the devastating disorders associated with WWOX mutations.
Developmental and epileptic encephalopathies (DEE) are a group of disorders associated with intractable seizures, brain development, and functional abnormalities, and in some cases, premature death. Pathogenic human germline biallelic mutations in tumor suppressor WW domain‐containing oxidoreductase (WWOX) are associated with a relatively mild autosomal recessive spinocerebellar ataxia‐12 (SCAR12) and a more severe early infantile WWOX‐related epileptic encephalopathy (WOREE). In this study, we generated an in vitro model for DEEs, using the devastating WOREE syndrome as a prototype, by establishing brain organoids from CRISPR‐engineered human ES cells and from patient‐derived iPSCs. Using these models, we discovered dramatic cellular and molecular CNS abnormalities, including neural population changes, cortical differentiation malfunctions, and Wnt pathway and DNA damage response impairment. Furthermore, we provide a proof of concept that ectopic WWOX expression could potentially rescue these phenotypes. Our findings underscore the utility of modeling childhood epileptic encephalopathies using brain organoids and their use as a unique platform to test possible therapeutic intervention strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.