Anionic phospholipids can confer a net negative charge to biological membranes. This surface charge generates an electrical field that serves to recruit extrinsic cationic proteins, can alter the disposition of transmembrane proteins and causes the local accumulation of soluble counterions, altering the local pH and the concentration of physiologically important ions like calcium. Because the phospholipid composition of the different organellar membranes varies, their surface charge is similarly expected to diverge. Yet, despite the important functional implications, remarkably little is known about the electrostatic properties of the individual organellar membranes. We therefore designed and implemented approaches to estimate the surface charge of the cytosolic membrane of various organelles in situ in intact cells. Our data indicate that the inner leaflet of the plasma membrane is most negative, with a surface potential of approximately -35 mV, followed by the Golgi complex > lysosomes > mitochondria ≈ peroxisomes > the endoplasmic reticulum, in decreasing order.
Keratin intermediate filaments form dynamic intracellular networks, which span the entire cytoplasm and provide mechanical strength to the cell. The mechanical resilience of the keratin intermediate filament network itself is determined by filament bundling. The bundling process can be reproduced in artificial conditions in the absence of any specific cross-linking proteins, which suggests that it is driven by generic physical forces acting between filaments. Here, we suggest a detailed model for bundling of keratin intermediate filaments based on interfilament electrostatic and hydrophobic interactions. It predicts that the process is limited by an optimal bundle thickness, which is determined by the electric charge of the filaments, the number of hydrophobic residues in the constituent keratin polypeptides, and the extent to which the electrolyte ions are excluded from the bundle interior. We evaluate the kinetics of the bundling process by considering the energy barrier a filament has to overcome for joining a bundle.
Innovative concepts and materials are enabling energy harvesters for slower motion, particularly for personal wearables or portable small-scale applications, hence contributing to a future sustainable economy. Here we propose a principle for a capacitive rotor device and analyze its operation. This device is based on a rotor containing many capacitors in parallel. The rotation of the rotor causes periodic capacitance changes and, when connected to a reservoir-of-charge capacitor, induces alternating current. The properties of this device depend on the lubricating liquid situated between the capacitor’s electrodes, be it a highly polar liquid, organic electrolyte, or ionic liquid – we consider all these scenarios. An advantage of the capacitive rotor is its scalability. Such a lightweight device, weighing tens of grams, can be implemented in a shoe sole, generating a significant power output of the order of Watts. Scaled up, such systems can be used in portable wind or water turbines.
Networks, whose junctions are free to move along the edges, such as two-dimensional soap froths and membrane tubular networks of endoplasmic reticulum are intrinsically unstable. This instability is a result of a positive tension applied to the network elements. A paradigm of networks exhibiting stable polygonal configurations in spite of the junction mobility, are networks formed by bundles of Keratin Intermediate Filaments (KIFs) in live cells. A unique feature of KIF networks is a, hypothetically, negative tension generated in the network bundles due to an exchange of material between the network and an effective reservoir of unbundled filaments. Here we analyze the structure and stability of two-dimensional networks with mobile three-way junctions subject to negative tension. First, we analytically examine a simplified case of hexagonal networks with symmetric junctions and demonstrate that, indeed, a negative tension is mandatory for the network stability. Another factor contributing to the network stability is the junction elastic resistance to deviations from the symmetric state. We derive an equation for the optimal density of such networks resulting from an interplay between the tension and the junction energy. We describe a configurational degeneration of the optimal energy state of the network. Further, we analyze by numerical simulations the energy of randomly generated networks with, generally, asymmetric junctions, and demonstrate that the global minimum of the network energy corresponds to the irregular configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.