Yeast libraries revolutionized the systematic study of cell biology. To extensively increase the number of such libraries, we used our previously devised SWAp-Tag (SWAT) approach to construct a genome-wide library of ~5,500 strains carrying the SWAT NOP1promoter-GFP module at the N terminus of proteins. In addition, we created six diverse libraries that restored the native regulation, created an overexpression library with a Cherry tag, or enabled protein complementation assays from two fragments of an enzyme or fluorophore. We developed methods utilizing these SWAT collections to systematically characterize the yeast proteome for protein abundance, localization, topology, and interactions.
A single translation product of the FUM1 gene encoding fumarase is distributed between the cytosol and mitochondria of Saccharomyces cerevisiae. All fumarase translation products are targeted and processed in mitochondria before distribution. Here we show that targeting of fumarase is coupled to translation and initially involves insertion of the protein across the mitochondrial membranes and processing by the matrix protease. Rapid folding of fumarase may determine its requirement for coupling of its translocation with translation and unique route of distribution. The amino termini of most fumarase molecules are translocated across the mitochondrial membranes and processed. Unlike the in vivo situation where these molecules are released into the cytosol, in vitro they remain externally attached to the mitochondria, thereby positioned for release from the organelle. Our model suggests that fumarase displays a unique mechanism of targeting and distribution, which occurs cotranslationally and involves folding and retrograde movement of the processed protein back through the translocation pore.Cytosolic and mitochondrial fumarase isoenzymes are encoded by the same gene (FUM1) in Saccharomyces cerevisiae (1). We have shown previously that these proteins follow a unique mechanism of subcellular localization and distribution in vivo. First, there is only one translation product of FUM1, and it is targeted to mitochondria by a characteristic NH 2 -terminal peptide presequence, which is subsequently removed by the mitochondrial matrix peptidase. Second, it appears that a subset of the processed fumarase molecules are fully imported into the matrix, whereas the majority (70 -80%) are released back into the cytosol as soluble active enzyme by an unknown mechanism (2).The question as to whether in vivo initiation of protein import into mitochondria must occur during (cotranslational) or can, with equal efficiency, occur after completion of protein synthesis (posttranslational) has been addressed previously. It has been proposed that in vivo the normal mode of import of such proteins is co-rather than posttranslational, as suggested by the observations that ribosomes synthesizing mitochondrial proteins were found associated with mitochondria, only minute amounts of some precursors of mitochondrial proteins were detected in yeast cells in vivo, and inhibition of translation inhibits import of mitochondrial proteins (3-7). On the other hand, in vivo accumulated precursors were observed to be chased into mitochondria. Thus, practically all naturally occurring proteins that have been studied could be imported posttranslationally in vivo, suggesting that translation and import are not necessarily coupled. In addition, in vitro, virtually all mitochondrial precursor proteins so far investigated are, under appropriate conditions, successfully imported posttranslationally. In the unique case of fumarase, translocation into the mitochondrial matrix in vivo appears to be strictly cotranslational (2). When fumarase precursors are accu...
Here we describe a C-SWAT library for high-throughput tagging of Saccharomyces cerevisiae open reading frames (ORFs). In 5,661 strains, we inserted an acceptor module after each ORF that can be efficiently replaced with tags or regulatory elements. We validated the library with targeted sequencing and tagged the proteome with bright fluorescent proteins to quantify the effect of heterologous transcription terminators on protein expression and to localize previously undetected proteins.
We have previously proposed that a single translation product of the FUM1 gene encoding fumarase is distributed between the cytosol and mitochondria of Saccharomyces cerevisiae and that all fumarase translation products are targeted and processed in mitochondria before distribution. Thus, fumarase processed in mitochondria returns to the cytosol. In the current work, we (i) generated mutations throughout the coding sequence which resulted in fumarases with altered conformations that are targeted to mitochondria but have lost their ability to be distributed; (ii) showed by mass spectrometry that mature cytosolic and mitochondrial fumarase isoenzymes are identical; and (iii) showed that hsp70 chaperones in the cytosol (Ssa) and mitochondria (Ssc1) can affect fumarase distribution. The results are discussed in light of our model of targeting and distribution, which suggests that rapid folding of fumarase into an import-incompetent state provides the driving force for retrograde movement of the processed protein back to the cytosol through the translocation pore.
We have previously proposed that a single translation product of the FUM1 gene encoding fumarase is distributed between the cytosol and mitochondria of Saccharomyces cerevisiae and that all fumarase translation products are targeted and processed in mitochondria before distribution. Alternative models for fumarase distribution have been proposed that require more than one translation product. In the current work (i) we show by using sequential Edman degradation and mass spectrometry that fumarase cytosolic and mitochondrial isoenzymes have an identical amino terminus that is formed by cleavage by the mitochondrial processing peptidase, (ii) we have generated fumarase mutants in which the second potential translation initiation codon (Met-24) has been substituted, yet the protein is processed efficiently and retains its ability to be distributed between the cytosol and mitochondria, and (iii) we show that although a signal peptide is required for fumarase targeting to mitochondria the specific fumarase signal peptide and the sequence immediately downstream to the cleavage site are not required for the dual distribution phenomenon. Our results are discussed in light of our model of fumarase targeting and distribution that suggests rapid folding into an import-incompetent state and retrograde movement of the processed protein back to the cytosol through the translocation pore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.