In order for hydrogen gas to be used as a fuel, it must be stored in sufficient quantity on board the vehicle. Efforts are being made to increase the hydrogen storage capabilities of metal-organic frameworks (MOFs) by introducing unsaturated metal sites into their linking element(s), as hydrogen adsorption centers. In order to devise successful hydrogen storage strategies there is a need for a fundamental understanding of the weak and elusive hydrogen physisorption interaction. Here we report our findings from the investigation of the weak intermolecular interactions of adsorbed hydrogen molecules on MOF-linkers by using cluster models. Since physical interactions such as dispersion and polarization have a major contribution to attraction energy, our approach is to analyze the adsorption interaction using energy decomposition analysis (EDA) that distinguishes the contribution of the physical interactions from the charge-transfer (CT) "chemical" interaction. Surprisingly, it is found that CT from the adsorbent to the σ*(H2) orbital is present in all studied complexes and can contribute up to approximately -2 kJ/mol to the interaction. When metal ions are present, donation from the σ(H2) → metal Rydberg-like orbital, along with the adsorbent → σ*(H2) contribution, can contribute from -2 to -10 kJ/mol, depending on the coordination mode. To reach a sufficient adsorption enthalpy for practical usage, the hydrogen molecule must be substantially polarized. Ultimately, the ability of the metalated linker to polarize the hydrogen molecule is highly dependent on the geometry of the metal ion coordination site where a strong electrostatic dipole or quadrupole moment is required.
A thorough experimental and computational study has been carried out to elucidate the mechanistic reasons for the high volumetric uptake of methane in the metal-organic framework Cu3(btc)2 (btc(3-) = 1,3,5-benzenetricarboxylate; HKUST-1). Methane adsorption data measured at several temperatures for Cu3(btc)2, and its isostructural analogue Cr3(btc)2, show that there is little difference in volumetric adsorption capacity when the metal center is changed. In situ neutron powder diffraction data obtained for both materials were used to locate four CD4 adsorption sites that fill sequentially. This data unequivocally shows that primary adsorption sites around, and within, the small octahedral cage in the structure are favored over the exposed Cu(2+) or Cr(2+) cations. These results are supported by an exhaustive parallel computational study, and contradict results recently reported using a time-resolved diffraction structure envelope (TRDSE) method. Moreover, the computational study reveals that strong methane binding at the open metal sites is largely due to methane-methane interactions with adjacent molecules adsorbed at the primary sites instead of an electronic interaction with the metal center. Simulated methane adsorption isotherms for Cu3(btc)2 are shown to exhibit excellent agreement with experimental isotherms, allowing for additional simulations that show that modifications to the metal center, ligand, or even tuning the overall binding enthalpy would not improve the working capacity for methane storage over that measured for Cu3(btc)2 itself.
Porous metal–organic polyhedra (MOPs), constructed from heterometallic PdII–MII (M = Cu, Ni, Zn) paddlewheel nodes and 5-tert-butyl-1,3-benzenedicarboxylate organic links, were prepared in which the PdII ions preferentially line the inner surface of the cage molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.