High biomass loading is a key technique to reduce the pretreatment cost of lignocellulosic biomass. In this work, various biomass species such as bagasse, erianthus, cedar, and eucalyptus were pretreated using an ionic liquid, 1-ethyl-3-methylimidazolium acetate, at different biomass loadings, particularly focusing on a high loading region. Cellulose structural changes in pretreated biomass were investigated via X-ray scattering and 13C solid-state nuclear magnetic resonance (SSNMR) spectroscopy. The structural behaviors roughly fell into two categories, corresponding to either grassy (bagasse and erianthus) or woody (cedar and hardwood) biomass. The grassy biomass gradually transformed from cellulose-I to cellulose-II in a monotonic manner against the biomass loading. In contrast, the transformation in the woody biomass occurred abruptly as solids was decreased within the high loadings range (50 wt% to 33 wt%). Below 33 wt%, a reformation of cellulose-I from cellulose-II proceeded readily. In terms of cellulose crystallinity, erianthus as well as bagasse showed a minimum value at 25 wt% loading, whereas the crystallinity for the woody biomass did not possess such a clear minimum. Acid hydrolysis of these pretreated biomass was also conducted and the relationship between the reactivity and the cellulose structural changes was discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.