Additive manufacturing has gained relevance in recent decades as an alternative to the manufacture of metal parts. Among the additive technologies, those that are classified as Directed Energy Deposition (DED) are characterized by their high deposition rate, noticeably, Wire Arc Additive Manufacturing (WAAM). However, having the inability to produce parts with acceptable final surface quality and high geometric precision is to be considered an important disadvantage in this process. In this paper, different torch trajectory strategies (oscillatory motion and overlap) in the fabrication of low carbon steel walls will be compared using Gas Metal Arc Welding (GMAW)-based WAAM technology. The comparison is done with a study of the mechanical and microstructural characteristics of the produced walls and finally, addressing the productivity obtained utilizing each strategy. The oscillation strategy shows better results, regarding the utilization rate of deposited material and the flatness of the upper surface, this being advantageous for subsequent machining steps.
Gas Metal Arc Welding (GMAW) is a manufacturing technology included within the different Wire Arc Additive Manufacturing alternatives. These technologies have been generating great attention among scientists in recent decades. Its main qualities that make it highly productive with a large use of material with relatively inexpensive machine solutions make it a very advantageous technology. This paper covers the application of this technology for the manufacture of thin-walled parts. A finite element model is presented for estimating the deformations in this type of parts. This paper presents a simulation model that predicts temperatures with less than 5% error and deformations of the final part that, although quantitatively has errors of 20%, qualitatively allows to know the deformation modes of the part. Knowing the part areas subject to greater deformation may allow the future adaptation of deposition strategies or redesigns for their adaptation. These models are very useful both at a scientific and industrial level since when we find ourselves with a technology oriented to Near Net Shape (NNS) manufacturing where deformations are critical for obtaining the final part in a quality regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.