The present study investigated whether kisspeptin-G protein-coupled receptor 54 (GPR54) signaling plays a role in mediating mating-induced ovulation in the musk shrew (Suncus murinus), a reflex ovulator. For this purpose, we cloned suncus Kiss1 and Gpr54 cDNA from the hypothalamus and found that suncus kisspeptin (sKp) consists of 29 amino acid residues (sKp-29). Injection of exogenous sKp-29 mimicked the mating stimulus to induce follicular maturation and ovulation. Administration of several kisspeptins and GPR54 agonists also induced presumed ovulation in a dose-dependent manner, and Gpr54 mRNA was distributed in the hypothalamus, showing that kisspeptins induce ovulation through binding to GPR54. The sKp-29-induced ovulation was blocked completely by pretreatment with a gonadotropin-releasing hormone (GnRH) antagonist, suggesting that kisspeptin activates GnRH neurons to induce ovulation in the musk shrew. In addition, in situ hybridization revealed that Kiss1-expressing cells are located in the medial preoptic area (POA) and arcuate nucleus in the musk shrew hypothalamus. The number of Kiss1-expressing cells in the POA or arcuate nucleus was up-regulated or downregulated by estradiol, suggesting that kisspeptin neurons in these regions were the targets of the estrogen feedback action. Finally, mating stimulus largely induced c-Fos expression in Kiss1-positive cells in the POA, indicating that the mating stimulus activates POA kisspeptin neurons to induce ovulation. Taken together, these results indicate that kisspeptin-GPR54 signaling plays a role in the induction of ovulation in the musk shrew, a reflex ovulator, as it does in spontaneous ovulators.brain | copulation | Kiss1r | metastin | ovary
The establishment of a receptive uterus is the prime requirement for embryo implantation. In mice, the E2-induced cytokine leukemia inhibitory factor (LIF) is essential in switching the uterine luminal epithelium (LE) from a nonreceptive to a receptive state. Here we define the LIF-mediated switch using array analysis and informatics to identify LIF-induced changes in gene expression and annotated signaling pathways specific to the LE. We compare gene expression profiles at 0, 1, 3, and 6 h, following LIF treatment. During the first hour, the JAK-STAT signaling pathway is activated and the expression of 54 genes declines, primarily affecting LE cytoskeletal and chromatin organization as well as a transient reduction in the progesterone, TGFbetaR1, and ACVR1 receptors. Simultaneously 256 genes increase expression, of which 42 are transcription factors, including Sox, Kfl, Hes, Hey, and Hox families. Within 3 h, the expression of 3987 genes belonging to more than 25 biological process pathways was altered. We confirmed the mRNA and protein distribution of key genes from 10 pathways, including the Igf-1, Vegf, Toll-like receptors, actin cytoskeleton, ephrin, integrins, TGFbeta, Wnt, and Notch pathways. These data identify novel LIF-activated pathways in the LE and define the molecular basis between the refractory and receptive uterine phases. More broadly, these findings highlight the staggering capacity of a single cytokine to induce a dynamic and complex network of changes in a simple epithelium essential to mammalian reproduction and provide a basis for identifying new routes to regulating female reproduction.
Isolation of Novel Adenovirus from Fruit Bat
Abstract. The effects of bisphenol A (BPA) on placentation have not been fully determined. The aim of this study was to clarify the structural changes of the placenta, abortion rate, and survival of neonates after BPA administration in mice. BPA (10 mg/kg/day) was administered to pregnant mice (BPA mice) subcutaneously from the first day of pregnancy (Day 0) to Day 7 (8 days total). The number of embryos and weights of whole uteri were measured on Days 10 and 12. Morphological changes in the placentae were examined by light microscopy on the corresponding days of pregnancy. The number of neonates was also counted. Survival rates were periodically calculated for neonates from the first day after parturition (P-Day 0) to P-Day 56. The number of embryos and weight of the uterus on Days 10 and 12 were significantly decreased by BPA injection. No notable differences were recognized between the left and right uteri. The proportion of the labyrinthine zone per whole placenta in the BPA mice became lower than that in the controls, and that of the metrial gland was higher in the BPA mice. The intervillous spaces of the placenta were narrower in the BPA mice. Degenerative changes were found in the trophoblastic giant cells and spongiotrophoblast layers of the BPA mice. The number of BPA mouse neonates was drastically decreased within 3 days after birth, and no mice survived after P-Day 56. The results suggest that BPA not only disrupts placental functions and leads to abortion through chronic stimulation of gene expression by binding to DNA but that it also affects the mortality of neonates through indirect exposure of embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.