Phosphaturic mesenchymal tumors typically cause paraneoplastic osteomalacia, chiefly as a result of FGF23 secretion. In a prior study, we identified FN1-FGFR1 fusion in 9 of 15 phosphaturic mesenchymal tumors. In this study, a total of 66 phosphaturic mesenchymal tumors and 7 tumors resembling phosphaturic mesenchymal tumor but without known phosphaturia were studied. A novel FN1-FGF1 fusion gene was identified in two cases without FN1-FGFR1 fusion by RNA sequencing and cross-validated with direct sequencing and western blot. Fluorescence in situ hybridization analyses revealed FN1-FGFR1 fusion in 16 of 39 (41%) phosphaturic mesenchymal tumors and identified an additional case with FN1-FGF1 fusion. The two fusion genes were mutually exclusive. Combined with previous data, the overall prevalence of FN1-FGFR1 and FN1-FGF1 fusions was 42% (21/50) and 6% (3/50), respectively. FGFR1 immunohistochemistry was positive in 82% (45/55) of phosphaturic mesenchymal tumors regardless of fusion status. By contrast, 121 cases of potential morphologic mimics (belonging to 13 tumor types) rarely expressed FGFR1, the main exceptions being solitary
Ossifying fibroma and fibrous dysplasia of the jaw are maxillofacial fibro-osseous lesions that should be distinguished each other by a pathologist because they show distinct patterns of disease progression. However, both lesions often show similar histological and radiological features, making distinction between the two a diagnostic dilemma. In this study, we performed immunological and molecular analyses of five ossifying fibromas, four cases of extragnathic fibrous dysplasia, and five cases of gnathic fibrous dysplasia with typical histological and radiographic features. First, we examined the difference between fibrous dysplasia and ossifying fibroma in the expression of Runx2 (which determined osteogenic differentiation from mesenchymal stem cells) and other osteogenic markers. Fibroblastic cells in fibrous dysplasia and ossifying fibroma showed strong Runx2 expression in the nucleus. The bone matrices of both lesions showed similar expression patterns for all markers tested except for osteocalcin. Immunoreactivity for osteocalcin was strong throughout calcified regions in fibrous dysplasia, but weak in ossifying fibroma lesions. Second, we performed PCR analysis with peptide nucleic acid (PNA) for mutations at the Arg 201 codon of the alpha subunit of the stimulatory G protein gene (GNAS), which has reported to be a marker for extragnathic fibrous dysplasia. All nine cases of extragnathic or gnathic fibrous dysplasia were positive for this mutation. On the other hand, none of the five cases of ossifying fibroma showed the mutation. These findings indicate that although fibrous dysplasia and ossifying fibroma are similar disease entities, especially in the demonstration of the osteogenic lineage in stromal fibroblast-like cells, they show distinct differences that can be revealed by immunohistochemical detection of osteocalcin expression. Furthermore, PCR analysis with PNA for GNAS mutations at the Arg 201 codon is a useful method to differentiate between fibrous dysplasia and ossifying fibroma.
The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC.
Modern society characterized by a 24/7 lifestyle leads to misalignment between environmental cycles and endogenous circadian rhythms. Persisting circadian misalignment leads to deleterious effects on health and healthspan. However, the underlying mechanism remains not fully understood. Here, we subjected adult, wild-type mice to distinct chronic jet-lag paradigms, which showed that long-term circadian misalignment induced significant early mortality. Non-biased RNA sequencing analysis using liver and kidney showed marked activation of gene regulatory pathways associated with the immune system and immune disease in both organs. In accordance, we observed enhanced steatohepatitis with infiltration of inflammatory cells. The investigation of senescence-associated immune cell subsets from the spleens and mesenteric lymph nodes revealed an increase in PD-1 + CD44 high CD4 T cells as well as CD95 + GL7 + germinal center B cells, indicating that the long-term circadian misalignment exacerbates immune senescence and consequent chronic inflammation. Our results underscore immune homeostasis as a pivotal interventional target against clock-related disorders. From the cellular to the organismal levels, circadian clocks regulate various essential biological processes to enable anticipation of and adaptation to the daily environmental changes from Earth rotation 1. Modernization of our society is accompanied by a dramatic change in human lifestyle, with unprecedented increases in, for example, night shift work and nocturnal feeding/recreational activities 2. Recent epidemiological studies have revealed shift workers as being at a higher risk of various diseases, such as mood disorders, metabolic syndrome, cardiovascular disease, and some types of cancers, suggesting that the misalignment between environmental cycles and endogenous circadian clocks exacerbates systemic pathological consequences 3-8. However, the pathophysiological mechanisms underlying the deleterious effects of long-term circadian misalignment in health and healthspan remain unclear. Recent studies have investigated the perturbation of circadian systems by environmental and/or genetic manipulation in animal models 9,10. For example, Davidson et al. reported that an experimental model of environmental perturbation induced by the scheduled shifts of light-dark cycles-called chronic jet-lag (CJL)-for 8 weeks using aged mice (27-31 months old) showed the mortality rate to be higher in the phase advance condition (6-hour phase advance every 7 days) than in the phase delay (6-hour phase delay every 7 days) condition or control LD condition 9. These studies principally investigated the acute or subacute (for up to a few months) effects of circadian misalignment; it thus remains uncertain how long-term perturbation of environmental light-dark cycle induces physiological transformation and pathological consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.