Many common human mesenchymal tumors, including gastrointestinal stromal tumor (GIST), rhabdomyosarcoma (RMS), and leiomyosarcoma (LMS), feature myogenic differentiation1–3. Here we report that intragenic deletion of the dystrophin-encoding and muscular dystrophy-associated DMD gene is a frequent mechanism by which myogenic tumors progress to high-grade, lethal sarcomas. Dystrophin is expressed in nonneoplastic and benign counterparts for GIST, RMS and LMS, and the DMD deletions inactivate larger dystrophin isoforms, including 427kDa dystrophin, while preserving expression of an essential 71kDa isoform. Dystrophin inhibits myogenic sarcoma cell migration, invasion, anchorage independence, and invadopodia formation, and dystrophin inactivation was found in 96%, 100%, and 62% of metastatic GIST, embryonal RMS, and LMS, respectively. These findings validate dystrophin as a tumor suppressor and likely anti-metastatic factor, suggesting that therapies in development for muscular dystrophies may also have relevance in treatment of cancer.
BCOR-CCNB3 sarcoma (BCS) is a recently defined genetic entity among undifferentiated round cell sarcomas, which was initially classified as and treated similarly to the Ewing sarcoma (ES) family of tumors. In contrast to ES, BCS shows consistent BCOR overexpression, and preliminary evidence suggests that these tumors share morphologic features with other tumors harboring BCOR genetic alterations, including BCOR internal tandem duplication (ITD) and BCOR-MAML3. To further investigate the pathologic features, clinical behavior, and their relationship to other round cell sarcomas, we collected 36 molecularly confirmed BCSs for a detailed histologic and immunohistochemical analysis. Four of the cases were also analyzed by RNA sequencing (RNAseq). An additional case with BCOR overexpression but negative CCNB3 abnormality showed a novel KMT2D-BCOR fusion by targeted RNAseq. The patients ranged in age from 2 to 44 years old (mean and median, 15), with striking male predominance (M:F=31:5). The tumor locations were slightly more common in bone (n=20) than soft tissue (n=14), with rare visceral (kidney, n=2) involvement. Histologically, BCS showed a spectrum of round to spindle cells with variable cellularity, monomorphic nuclei and fine chromatin pattern, delicate capillary network, and varying amounts of myxoid or collagenous stroma. The morphologic features and immunoprofile showed considerable overlap with other round cell sarcomas with BCOR oncogenic upregulation, that is, BCOR-MAML3 and BCOR ITD. Follow-up available in 22 patients showed a 5-year overall survival of 72%, which was relatively similar to ES (79%, P=0.738) and significantly better than CIC-DUX4 sarcomas (43%, P=0.005) control groups. Local recurrences occurred in 6 patients and distant metastases (lung, soft tissue/bone, pancreas) in 4. Seven of 9 cases treated with an ES chemotherapy regimen with evaluable histologic response showed >60% necrosis in posttherapy resections. Unsupervised clustering by RNAseq data revealed that tumors with BCOR genetic alterations, including BCOR-CCNB3, BCOR-MAML3, and BCOR ITD, formed a tight genomic group distinct from ES and CIC-rearranged sarcomas.
Phosphaturic mesenchymal tumors typically cause paraneoplastic osteomalacia, chiefly as a result of FGF23 secretion. In a prior study, we identified FN1-FGFR1 fusion in 9 of 15 phosphaturic mesenchymal tumors. In this study, a total of 66 phosphaturic mesenchymal tumors and 7 tumors resembling phosphaturic mesenchymal tumor but without known phosphaturia were studied. A novel FN1-FGF1 fusion gene was identified in two cases without FN1-FGFR1 fusion by RNA sequencing and cross-validated with direct sequencing and western blot. Fluorescence in situ hybridization analyses revealed FN1-FGFR1 fusion in 16 of 39 (41%) phosphaturic mesenchymal tumors and identified an additional case with FN1-FGF1 fusion. The two fusion genes were mutually exclusive. Combined with previous data, the overall prevalence of FN1-FGFR1 and FN1-FGF1 fusions was 42% (21/50) and 6% (3/50), respectively. FGFR1 immunohistochemistry was positive in 82% (45/55) of phosphaturic mesenchymal tumors regardless of fusion status. By contrast, 121 cases of potential morphologic mimics (belonging to 13 tumor types) rarely expressed FGFR1, the main exceptions being solitary
Phosphaturic mesenchymal tumours (PMTs) are uncommon soft tissue and bone tumours that typically cause hypophosphataemia and tumour-induced osteomalacia (TIO) through secretion of phosphatonins including fibroblast growth factor 23 (FGF23). PMT has recently been accepted by the World Health Organization as a formal tumour entity. The genetic basis and oncogenic pathways underlying its tumourigenesis remain obscure. In this study, we identified a novel FN1-FGFR1 fusion gene in three out of four PMTs by next-generation RNA sequencing. The fusion transcripts and proteins were subsequently confirmed with RT-PCR and western blotting. Fluorescence in situ hybridization analysis showed six cases with FN1-FGFR1 fusion out of an additional 11 PMTs. Overall, nine out of 15 PMTs (60%) harboured this fusion. The FN1 gene possibly provides its constitutively active promoter and the encoded protein's oligomerization domains to overexpress and facilitate the activation of the FGFR1 kinase domain. Interestingly, unlike the prototypical leukaemia-inducing FGFR1 fusion genes, which are ligand-independent, the FN1-FGFR1 chimeric protein was predicted to preserve its ligand-binding domains, suggesting an advantage of the presence of its ligands (such as FGF23 secreted at high levels by the tumour) in the activation of the chimeric receptor tyrosine kinase, thus effecting an autocrine or a paracrine mechanism of tumourigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.