Nanoparticles are expected to be applicable for the theranostics as a carrier of the diagnostic and therapeutic agents. Lactosome is a polymeric micelle composed of amphiphilic polydepsipeptide, poly(sarcosine)64-block-poly(L-lactic acid)30, which was found to accumulate in solid tumors through the enhanced permeability and retention effect. However, lactosome was captured by liver on the second administration to a mouse. This phenomenon is called as the accelerated blood clearance phenomenon. On the other hand, peptide-nanosheet composed of amphiphilic polypeptide, poly(sarcosine)60-block-(L-Leu-Aib)6, where the poly(L-lactic acid) block in lactosome was replaced with the (L-Leu-Aib)6 block, abolished the accelerated blood clearance phenomenon. The ELISA and in vivo near-infrared fluorescence imaging revealed that peptide-nanosheets did not activate the immune system despite the same hydrophilic block being used. The high surface density of poly(sarcosine) chains on the peptide-nanosheet may be one of the causes of the suppressive immune response.
Photothermal therapy (PTT) using a photo-absorbent in the near-infrared (NIR) region is an effective methodology for local cancer treatment. Before PTT using a NIR absorbent is executed, the operator generally determines the two parameters of fluence rate and irradiation time. However, even if the irradiation parameters are unchanged, the therapeutic effect of PTT is often different for individual tumors. Hence, we examined the therapeutic effect of PTT using a NIR absorbent (ICG lactosome) while changing two parameters (fluence rate and irradiation time) in various combinations. As a result, there was no robust correlation between those parameters and the therapeutic effect. Compared to those parameters, we found that a more reliable determinant was maintenance of the tumor temperature above 43 °C during NIR irradiation. To reconfirm the significance of the determinant, we developed a new system that can regulate the temperature at the NIR irradiation site at a constant level. By using the new system, we verified the treatment outcomes for tumors in which the NIR absorbent had accumulated. All of the tumors that had been kept at 43 °C during NIR irradiation were cured, while none of the tumors that had been kept at a temperature below 41 °C were cured. In conclusion, PTT using a NIR absorbent with thermal dosimetry is a highly reliable treatment for cancer.
Lactosome is a polymeric micelle composed of amphiphilic polydepsipeptide, poly(sarcosine)64-block-poly(l-lactic acid)30 (AB-type), which accumulates in solid tumors through the enhanced permeability and retention (EPR) effect. However, lactosome on multiple administrations changed its pharmacokinetics from accumulation in tumors to liver due to the production of antilactosome IgM, which was triggered by the first administration. This phenomenon is called the accelerated blood clearance (ABC). In order to reduce the production of antilactosome IgM, a novel nanoparticle composed of (poly(sarcosine)23)3-block-poly(l-lactic acid)30 (A3B-type) was prepared. The A3B-type lactosome at the second administration showed an in vivo disposition similar to that at the first administration due to suppression of antibody production. This study involving the AB- and A3B-type lactosomes, with variation of conditions, revealed that the high local density of poly(sarcosine) chains of the A3B-type lactosome should relate to the prevention of a polymeric micelle from interacting B-cell receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.