Subarachnoid hemorrhage (SAH) often induces a long-term narrowing of the cerebral artery called cerebral vasospasm. Myosin light chain (MLC) in the spastic basilar artery was reported previously to be phosphorylated by Ca(2+)/calmodulin-dependent MLC kinase. Because Rho-kinase, which is activated by the small GTPase Rho, phosphorylates not only MLC but also myosin phosphatase at its myosin-binding subunit (MBS), thus inactivating myosin phosphatase, we examined whether Rho-kinase is involved in the development of vasospasm. Cerebral vasospasm was produced in the canine basilar artery by a 2-hemorrhage method, and vasocontractions were induced by topical application of 80 mmol/L KCl or 0.5 micromol/L serotonin to the canine basilar artery exposed transclivally. The phosphorylation of MLC in the basilar artery was increased concurrently with an enhancement in the intensity of vasospasm with the passage of time after SAH. In addition, Rho-kinase in the basilar artery was activated concurrently with an increase in the phosphorylation of MBS at Ser854 in vasospasm. The Rho-kinase activation levels in vasospasm on days 0 and 2 were comparable to those in KCl- and serotonin-induced sustained vasocontraction, respectively, and those in vasospasm on day 7 were markedly high. The topical application of Y-27632, a specific inhibitor of Rho-kinase, to the exposed spastic basilar artery on day 7 induced a dose-dependent dilation, and the intensities of vasospasm and the phosphorylation of MBS and MLC were simultaneously decreased by 10 micromol/L Y-27632, although the decrease in MBS phosphorylation was more marked than the decrease in MLC phosphorylation. These results indicate that the activation of Rho-kinase and the phosphorylation of MLC and MBS occur concomitantly during vasospasm induced by SAH and suggest that Rho-kinase is involved in the enhancement of cerebral vasospasm in addition to Ca(2+)/calmodulin-dependent MLC kinase by increasing the phosphorylation of MLC directly or indirectly as a result of the inhibition of myosin phosphatase by its phosphorylation.
The gene expression of five matrix metalloproteinases (MMPs) and two tissue inhibitors of metalloproteinases (TIMPs) was studied in human gliomas in vivo and in vitro to evaluate their roles in glioma invasion. Simultaneous expression of one to four MMP genes and two TIMP genes was found in 17 surgical glioma specimens, and one MMP (gelatinase A) gene and two TIMP genes were simultaneously expressed in tissue of three brains. The concomitant overexpression of gelatinase A, gelatinase B, and occasional matrilysin genes was associated with the malignancy of gliomas and accompanied by overexpression of the TIMP-1 gene. In five human glioma cell lines, gelatinase A, TIMP-1, and TIMP-2 genes were constitutively expressed in alll cell lines: the matrilysin gene in three cell lines; the stromelysin gene in two cell lines; and the interstitial collagenase gene in one cell line. There was a clear difference in the expression of gelatinase B and stromelysin genes between surgical glioma specimens and glioma cell lines: the gelatinase B gene was not expressed constitutively in vitro but was overexpressed in vivo, whereas the stromelysin gene was not expressed in vivo but was expressed in some cell lines. To find the cause of that difference in vivo and in vitro, the transcriptional regulations of MMP and TIMP genes by tumor promoter, growth factors, or cytokines were studied in vitro. Interstitial collagenase, gelatinase B, stromelysin, and TIMP-1 genes were upregulated in many cell lines by phorbol-12-myristate-13-acetate (PMA) and in some cell lines by epidermal growth factor, tumor necrosis factor-alpha, or interleukin-1 beta. Transforming growth factor-beta 1 (TGF beta 1) upregulated gelatinase A and matrilysin genes in some cell lines, and there were no clear responses from any MMP and TIMP genes to interleukin-6. Thus, the transcriptional modulation of MMP genes by these growth factors and cytokines seemed insufficient to explain the difference in gelatinase B and stromelysin gene expressions in vivo and in vitro and was suggestive of the genetic alteration of glioma cells in vitro, the heterogeneous cell population in glioma tissues, or both. Furthermore, the in vitro invasion of glioma cells through Matrigel in response to PMA, TGF beta 1, or TIMP-1 was assessed by chemoinvasion assay. In most cell lines, invasion was significantly stimulated by PMA or TGF beta 1 but suppressed by TIMP-1.(ABSTRACT TRUNCATED AT 400 WORDS)
At the present time, endovascular occlusion of the dissected site is a safe, minimally invasive, and reliable treatment for dissecting aneurysms when a test occlusion is tolerated and adequate collateral circulation is present.
The proteasome inhibitors lactacystin and AcLLNal induced p53-independent apoptosis in two human glioma cell lines, and the apoptosis was accompanied by up-regulation of immunoreactive wild-type p53, p21 fI , Mdm2, and p27 uipI . Pretreatment with cycloheximide decreased the induction of cell death independently of p53 protein status, suggesting that the upregulation of short-lived proteins is associated with proteasome inhibitor-induced apoptosis. Caspase-3-like proteases were activated in the proteasome inhibitor-mediated apoptosis, and the induction of cell death was inhibited more effectively in the presence of z-VAD.fmk than in the presence of Ac-DEVD.fmk, suggesting that caspases other than caspase-3 are involved. Nonetheless, there were no significant alterations in levels of immunoreactive Bcl-2, Bcl-x v , Bax, Bad, and Bak, nor any evidence of cytochrome c release into cytosol and dissipation of v v8 8 m . Thus, the proteasome inhibitor-induced apoptosis is mediated by a mitochondria-independent mechanism, and the once activated caspase-3 does not cause the cytochrome c release and the v v8 8 m disruption. z 1999 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.