Autosomal dominant oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease with a world-wide distribution. It usually presents in the sixth decade with progressive swallowing difficulties (dysphagia), eyelid drooping (ptosis) and proximal limb weakness. Unique nuclear filament inclusions in skeletal muscle fibres are its pathological hallmark. We isolated the poly(A) binding protein 2 gene (PABP2) from a 217-kb candidate interval on chromosome 14q11 (B.B. et al., manuscript submitted). A (GCG)6 repeat encoding a polyalanine tract located at the N terminus of the protein was expanded to (GCG)8-13 in the 144 OPMD families screened. More severe phenotypes were observed in compound heterozygotes for the (GCG)9 mutation and a (GCG)7 allele that is found in 2% of the population, whereas homozygosity for the (GCG)7 allele leads to autosomal recessive OPMD. Thus the (GCG)7 allele is an example of a polymorphism which can act either as a modifier of a dominant phenotype or as a recessive mutation. Pathological expansions of the polyalanine tract may cause mutated PABP2 oligomers to accumulate as filament inclusions in nuclei.
Congenital fibrosis of the extraocular muscles type 1 (CFEOM1; OMIM #135700) is an autosomal dominant strabismus disorder associated with defects of the oculomotor nerve. We show that individuals with CFEOM1 harbor heterozygous missense mutations in a kinesin motor protein encoded by KIF21A. We identified six different mutations in 44 of 45 probands. The primary mutational hotspots are in the stalk domain, highlighting an important new role for KIF21A and its stalk in the formation of the oculomotor axis.
Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disorder characterized by severe immunologic defects, reduced pigmentation, bleeding tendency, and progressive neurological dysfunction. Most patients present in early childhood and die unless treated by bone marrow transplantation. About 10-15% of patients exhibit a much milder clinical phenotype and survive to adulthood, but develop progressive and often fatal neurological dysfunction. Very rare patients exhibit an intermediate adolescent CHS phenotype, presenting with severe infections in early childhood, but a milder course by adolescence, with no accelerated phase. Here, we describe the organization and genomic DNA sequence of the CHS1 gene and mutation analysis of 21 unrelated patients with the childhood, adolescent, and adult forms of CHS. In patients with severe childhood CHS, we found only functionally null mutant CHS1 alleles, whereas in patients with the adolescent and adult forms of CHS we also found missense mutant alleles that likely encode CHS1 polypeptides with partial function. Together, these results suggest an allelic genotype-phenotype relationship among the various clinical forms of CHS.
The identification and characterization of the FAME gene allows us to better understand the molecular basis of FAME. Such knowledge may provide clues to understanding the molecular basis of the clinically similar, and more common, juvenile myoclonic epilepsies, and other generalized seizure disorders that have thus far eluded genetic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.