ABSTRACT. An updated compilation of published and new data of major-ion (Ca, Cl, K, Mg, Na, NO 3 , SO 4 ) and methylsulfonate (MS) concentrations in snow from 520 Antarctic sites is provided by the national ITASE (International Trans-Antarctic Scientific Expedition) programmes of Australia, Brazil, China, Germany, Italy, Japan, Korea, New Zealand, Norway, the United Kingdom, the United States and the national Antarctic programme of Finland. The comparison shows that snow chemistry concentrations vary by up to four orders of magnitude across Antarctica and exhibit distinct geographical patterns. The Antarctic-wide comparison of glaciochemical records provides a unique opportunity to improve our understanding of the fundamental factors that ultimately control the chemistry of snow or ice samples. This paper aims to initiate data compilation and administration in order to provide a framework for facilitation of Antarctic-wide snow chemistry discussions across all ITASE nations and other contributing groups. The data are made available through the ITASE web page (http:// www2.umaine.edu/itase/content/syngroups/snowchem.html) and will be updated with new data as they are provided. In addition, recommendations for future research efforts are summarized.
Snow radar profiles were measured in Dronning Maud Land, East Antarctica, in the vicinity of the Finnish research station Aboa during austral summer 1999/ 2000. The aim was to study the annual layering in the upper 50 m of the snowpack and to compare the results obtained by three radar antenna frequencies (50, 100 and 800 MHz). Intercomparison of the radar profiles measured by the three frequencies shows that some individual internal layers are visible with different antennas. Sparse accumulation-rate data from stake measurements and snow pits are compared with layer depths. The comparison reveals a great deal of scatter due to the large interannual variability in accumulation patterns. Using the radar layers as isochrones together with a model of depth^density^radarwave velocity allows the individual accumulation data to be integrated, and a better estimate of accumulation patterns is obtained. Using the radar layering seems to be a much better method of estimating accumulation rate in this region than using a short series of stake measurements, even in the absence of deep ice cores to directly date the radar layering.
During the spring of 1998, measurements of total albedos, spectral albedos and ice transparency were made on coastal fast ice in the Gulf of Finland, Baltic Sea, to produce values for models, to compare instruments and to test a new method for measuring under ice irradiance. The broadband albedos between 400 and 700 nm varied between 0.19 and 0.76, and those between 300 and 1,100 nm were from 0.16 to 0.75. The condition of the surface, and especially the presence of liquid water or snow, was the most important factor affecting the albedos, but also the cloudcover and forest shading had an effect. The diffuse attenuation coefficient integrated over the range 400 to 700 nm was 6.8 m−1. Spectral albedos were weakly dependent on wavelength in the visible band (300-800 nm) decreasing in the longer wavelengths. The albedo results were in good agreement with earlier observations.
Snow stratigraphy was analyzed in the Maudheimvidda area of western Dronning Maud Land, East Antarctica, during austral summer 1999/2000 as a part of the Finnish Antarctic Research Programme (FINNARP). Measurements were made in shallow (1–2m) snow pits along a 350 km transect from the coast to the polar plateau, covering at least one annual cycle and an elevation range from sea level to about 2500 m. The aim of the study is to document spatial and temporal variations in snow-cover properties, with the further aim of relating these variations to environmental factors and to patterns observable by remote sensing. The measurements suggest five principal snow zones: (i) sea ice, (ii) the seaward edge zone of the ice shelf, (iii) the inner parts of the ice shelf, (iv) the snow cover above the grounding line and (v) the local topographic highs. Local topographic highs such as ice domes and ice rises differ from other snow environments: the snow is less densely packed, possibly an indication of locally reduced speed of the katabatic outflow. Fewer and thinner crusts on the topographic highs are consistent with RADARSAT backscatter variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.