Oxidative stress is induced by a wide range of environmental factors including UV stress, pathogen invasion (hypersensitive reaction), herbicide action and oxygen shortage. Oxygen deprivation stress in plant cells is distinguished by three physiologically different states: transient hypoxia, anoxia and reoxygenation. Generation of reactive oxygen species (ROS) is characteristic for hypoxia and especially for reoxygenation. Of the ROS, hydrogen peroxide (H(2)O(2)) and superoxide (O(2)(.-)) are both produced in a number of cellular reactions, including the iron-catalysed Fenton reaction, and by various enzymes such as lipoxygenases, peroxidases, NADPH oxidase and xanthine oxidase. The main cellular components susceptible to damage by free radicals are lipids (peroxidation of unsaturated fatty acids in membranes), proteins (denaturation), carbohydrates and nucleic acids. Consequences of hypoxia-induced oxidative stress depend on tissue and/or species (i.e. their tolerance to anoxia), on membrane properties, on endogenous antioxidant content and on the ability to induce the response in the antioxidant system. Effective utilization of energy resources (starch, sugars) and the switch to anaerobic metabolism and the preservation of the redox status of the cell are vital for survival. The formation of ROS is prevented by an antioxidant system: low molecular mass antioxidants (ascorbic acid, glutathione, tocopherols), enzymes regenerating the reduced forms of antioxidants, and ROS-interacting enzymes such as SOD, peroxidases and catalases. In plant tissues many phenolic compounds (in addition to tocopherols) are potential antioxidants: flavonoids, tannins and lignin precursors may work as ROS-scavenging compounds. Antioxidants act as a cooperative network, employing a series of redox reactions. Interactions between ascorbic acid and glutathione, and ascorbic acid and phenolic compounds are well known. Under oxygen deprivation stress some contradictory results on the antioxidant status have been obtained. Experiments on overexpression of antioxidant production do not always result in the enhancement of the antioxidative defence, and hence increased antioxidative capacity does not always correlate positively with the degree of protection. Here we present a consideration of factors which possibly affect the effectiveness of antioxidant protection under oxygen deprivation as well as under other environmental stresses. Such aspects as compartmentalization of ROS formation and antioxidant localization, synthesis and transport of antioxidants, the ability to induce the antioxidant defense and cooperation (and/or compensation) between different antioxidant systems are the determinants of the competence of the antioxidant system.
The redox potential of the cell, as well as the antioxidant status of the tissue, are considered to be important regulatory constituents in an adaptive response in plants. Here the involvement of active antioxidants ascorbic acid (AA), reduced glutathione (GSH) and α‐ and β‐tocopherols in reactive oxygen species scavenging, and the effect of anoxic stress on their reduction state were studied in 4 anoxia‐tolerant and ‐intolerant plant species: Iris germanica L., Iris pseudacorus L., wheat (Triticum aestivum L. cv. Leningradka) and rice (Oryza sativa L. cv. VNIIR). The initial antioxidant content (both AA and GSH) was higher in the rhizomes of the more anoxia‐tolerant Iris spp., as compared with that of the roots of the cereals. The predominant form of ascorbate was dehydroascorbic acid (DHA) in the cereals and AA in the Iris spp. Imposition of anoxia with subsequent reoxygenation resulted in an overall depletion of the reduced forms of antioxidants. No concurrent increase in oxidised forms (DHA and conjugated glutathione) was observed in anoxic samples. α‐tocopherol content in Iris spp. was in the range 1–2 μg g−1 fresh weight, while β‐tocopherol content was higher in the anoxia‐intolerant I. germanica (7.2 μg g−1 fresh weight) as compared with the tolerant I. pseudacorus (1.5 μg g−1 fresh weight). In I. pseudacorus, a significant decrease in α‐ and β‐tocopherol levels was observed only after long‐term (45 days) anoxia. The results suggested exclusion of AA and GSH from the redox cycling under prolonged anoxia, and a concomitant decrease in the redox state, as well as an anoxia‐induced depletion of α‐ and β‐tocopherols.
Under stress conditions, mitochondria sense metabolic changes, e.g. in pH, cytoplasmic Ca(2+), energy status, and reactive oxygen species (ROS), and respond by induction of the permeability transition pore (PTP) and by releasing cytochrome c, thus initiating the programmed cell death (PCD) cascade in animal cells. In plant cells, the presence of all the components of the cascade has not yet been shown. In wheat (Triticum aestivum L.) root mitochondria, the onset of anoxia caused rapid dissipation of the inner membrane potential, initial shrinkage of the mitochondrial matrix and the release of previously accumulated Ca(2+). Ca(2+) uptake by mitochondria was dependent on the presence of inorganic phosphate. Treatment of mitochondria with high micromolar and millimolar Ca(2+) (but not Mg(2+)) concentrations induced high amplitude swelling, indicative of PTP opening. Alterations in mitochondrial volume were confirmed by transmission electron microscopy. Mitochondrial swelling was not sensitive to cyclosporin A (CsA)-an inhibitor of mammalian PTP. The release of cytochrome c was monitored under lack of oxygen. Anoxia alone failed to induce cytochrome c release from mitochondria. Oxygen deprivation and Ca(2+) ions together caused cytochrome c release in a CsA-insensitive manner. This process correlated positively with Ca(2+) concentration and required Ca(2+) localization in the mitochondrial matrix. Functional characteristics of wheat root mitochondria, such as membrane potential, Ca(2+) transport, swelling, and cytochrome c release under lack of oxygen are discussed in relation to PCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.