No abstract
This study was designed to evaluate the protective effect of ethanol extract (SEL001) isolated from a potent probiotic strain Lactobacillus sakei proBio-65 on imiquimod (IMQ)-induced psoriasis-like skin inflammation in a mouse model. Histopathological and histomorphometrical changes in the ear and dorsal skin tissues were observed under hematoxylin and eosin stain for general histopathological architectures or Masson’s trichrome stain for collagen fibers. The expression profile of psoriasis-associated specific genes was determined using Real-Time PCR analysis. As a result, topical application of IMQ resulted in a significant increase of mean total and epithelial (epidermis) thicknesses, the number of inflammatory cells infiltrated in the dermis, and the decrease of dermis collagen fiber occupied regions in the ear tissues of IMQ and IMQ plus vaseline treated groups when compared to the intact control group. A significant increase of epithelial thickness and number of inflammatory cells infiltrated in the dermis of dorsal skin tissues were also noticed in IMQ and IMQ plus vaseline treated groups as compared to the intact control group, suggesting classic IMQ-induced hypersensitive psoriasis. IMQ-induced hypersensitive psoriasis related histopathological changes to the ear and dorsal skin tissues were significantly inhibited by the treatment of a standard drug clobetasol and SEL001. Further, mRNA expression analysis indicated a significant increase in gene expression levels of pro-inflammatory cytokines, including IL-19, IL-17A, and IL-23 in IMQ and IMQ plus vaseline treated groups than that of the control. Clobetasol and SEL001 treated groups resulted in a lower gene expression level of IL-19, IL-17A, and IL-23 as compared to IMQ and IMQ plus vaseline treated groups. These results enforce that SEL001 could be a novel treatment for psoriasis and an alternative to other drugs that pose a number of side effects on the skin.
TNF-receptor associated factor (TRAF) proteins are key adaptor molecules containing E3 ubiquitin ligase activity that play a critical role in immune cell signaling. TRAF1 is a unique family of TRAF lacking the N-terminal RING finger domain. TRAF1 is an important scaffold protein that participates in TNFR2 signaling in T cells as a negative or positive regulator via direct interaction with TRAF2, which has recently been identified as a pro-apoptotic regulator in neuronal cell death. Here, we report the first crystal structure of the TRAF1 TRAF domain containing both the TRAF-N coiled-coil domain and the TRAF-C domain. Our structure reveals both similarities and differences with other TRAF family members, which may be functionally relevant to TRAFs. We also found that the TRAF-N coiled-coil domain of TRAF1 is critical for the trimer formation and stability of the protein. Finally, we found that conserved surface residues on the TRAF1 TRAF domain that might be binding hot spots that are critical for interaction with signaling molecules.
The novel coronavirus disease (COVID-19) a global pandemic outbreak is an emerging new virus accountable for respiratory illness caused by SARS-CoV-2, originated in Wuhan city, Hubei province China, urgently calls to adopt prevention and intervention strategies. Several viral epidemics such as severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 to 2003 and H1N1 influenza in 2009 were reported since last two decades. Moreover, the Saudi Arabia was the epicenter for Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. The CoVs are large family with single-stranded RNA viruses (+ssRNA). Genome sequence of 2019-nCoV, shows relatively different homology from other coronavirus subtypes, categorized in betacoronavirus and possibly found from strain of bats. The COVID-19 composed of exposed densely glycosylated spike protein (S) determines virus binding and infiltrate into host cells as well as initiate protective host immune response. Recently published reviews on the emerging SARS-CoV-2 have mainly focused on its structure, development of the outbreak, relevant precautions and management trials. Currently, there is an urgency of pharmacological intervention to combat this deadly infectious disease. Elucidation of molecular mechanism of COVID-19 becomes necessary. Based on the current literature and understanding , the aim of this review is to provide current genome structure, etiology, clinical prognosis as well as to explore the viral receptor binding together functional insight of SARS-CoV-2 infection (COVID-19) with treatment and preventive measures.
The overproduction of reactive oxygen species (ROS) causes oxidative stress, such as Hydrogen peroxide (H 2 O 2 ). Acute oxidative stress is one of the main reasons for cell death. In this study, the antioxidant properties of vanillic acid- a polyphenolic compound was evaluated. Therefore, this study aims to check the effectiveness of vanillic acid in H 2 O 2 -induced oxidative stress in D. Mel-2 cell line. The efficacy was determined by biochemical tests to check the ROS production. The cytotoxicity of H 2 O 2 and vanillic acid was checked by MTT assay. The DNA fragmentation was visualized by gel electrophoresis. Protein biomarkers of oxidative stress were analyzed by western blotting. The results depict a promising antioxidant effect of vanillic acid. The IC 50 value of vanillic acid and H 2 O 2 was found 250 μg/ml and 125 μg/ml, respectively. The catalase activity, SOF, GPx, and PC was seen less in H 2 O 2 treated group compared with the control and vanillic acid treated group. However, the TBRAS activity was hight in H 2 O 2 treated group. The effect of H 2 O 2 on DNA fragmentation was high as compared with vanillic acid-treated cells. The protein expression of Hsp70, IL-6 and iNOS was seen significant in a vanillic acid-treated group as compared with H 2 O 2 treated group. These results reinforce that at low concentration, vanillic acid could be used as an antioxidant agent in the food and pharmaceutical industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.