Osteonecrosis of the femoral head (ONFH) occurs frequently in adolescents and young adults and causes progressive deformation and destruction of the hip joint and impairs standing and walking, resulting in a significant decrease in the quality of life of patients. In addition, studies have shown that a history of corticosteroid administration and heavy alcohol consumption are closely related to the occurrence of ONFH. However, the detailed mechanism by which steroid administration and alcohol consumption are associated with the development of the disease is still unknown. With many researches still ongoing and without a clear biological pathway for osteonecrosis, effective preventive measures cannot be taken. Therefore, the current focus of ONFH treatment is to establish an early diagnosis and treatment strategy. We obtained the femoral heads of four patients with steroidal ONFH and three patients with alcoholic ONFH. We then compared the femoral heads of steroidal and alcoholic osteonecrosis by analyzing them at the molecular level by Raman spectroscopy. Crystallographic changes (deformations) in the mineral phase and fraction of organic material respect to the total mass were then plotted as a function. We found that changes in bone composition in ONFH were different in steroidal and alcoholic ONFH. We conclude that this suggests that the developmental mechanisms of steroidal and alcoholic ONFH may follow different paths. We also noticed that while steroid seem to lead to a more marked degradation of the tissue, alcohol seem to affect also the quality of the healthy tissue.
Raman spectroscopy has recently been used for quantitative analyses of cortical bone tissue and related materials, such as dentin and enamel. While those analyses have proven useful as potential diagnostic tools, the Raman spectrum of bone encrypts a wealth of additional molecular scale details about structure and crystal arrangement, which are yet to be unfolded. Such details directly link to both bone physiology and pathology. In this work, a triple monochromator spectrometer with high spectral resolution, employed in polarized light configurations, was used to extract quantitative details about the preferential crystallographic orientation of apatite and collagen components in a human proximal femoral cortical bone sample. This body of information was then used to model the bone structure at the nanometric scale through a methodology that could be key in assessments of bone structure in health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.