To increase intramuscular fat accumulation, Japanese Black cattle are commonly fed a high-grain diet from 10 to 30 months of age although it can result in the abnormal accumulation of organic acids in the rumen. We explored the effect of long-term high-concentrate diet feeding on ruminal pH and fermentation, and its effect on the rumen bacterial community in Japanese Black beef cattle during a 20-month fattening period. Nine castrated and fistulated Japanese Black beef cattle were housed with free access to food and water throughout the study period (10–30 months of age). The fattening stages included Early, Middle, and Late stages (10–14, 15–22, and 23–30 months of age, respectively). Cattle were fed high-concentrate diets for the experimental cattle during fattening. The body weight of the cattle was 439 ± 7.6, 561 ± 11.6, and 712 ± 18.5 kg (mean ± SE) during the Early, Middle, and Late stages, respectively. Ruminal pH was measured continuously during the final 7 days of each stage, and rumen fluid and blood samples were collected on day 4 (fourth day during the final 7 days of the pH measurements). The 24-h mean ruminal pH during the Late stage was significantly lower than that during the Early stage. Total volatile fatty acid (VFA) during the Late stage was significantly lower than during the Early and Middle stages, but no changes were noted in individual VFA components. The lactic acid concentration during the Late stage was significantly higher than that during the Early and Middle stages. The bacterial richness indices decreased significantly during the Late stage in accordance with the 24-h mean ruminal pH. Among the 35 bacterial operational taxonomic units (OTUs) shared by all samples, the relative abundances of OTU8 (Family Ruminococcaceae) and OTU26 (Genus Butyrivibrio) were positively correlated with the 24-h mean ruminal pH. Total VFA concentration was negatively correlated with OTU167 (Genus Intestinimonas), and lactic acid concentration was correlated positively with OTU167 and OTU238 (Family Lachnospiraceae). These results suggested that long-term high-grain diet feeding gradually lowers ruminal pH and total VFA production during the Late fattening stage. However, the ruminal bacterial community adapted to feeding management and the lower pH during the Late stage by preserving their diversity or altering their richness, composition, and function, to enhance lactic acid production in Japanese Black beef cattle.
Progress in metabolomic analysis now allows the evaluation of food quality. This study aims to identify the metabolites in meat from livestock using a metabolomic approach. Using gas chromatography–mass spectrometry (GC/MS), many metabolites were reproducibly detected in meats, and distinct differences between livestock species (cattle, pigs, and chickens) were indicated. A comparison of metabolites between tissues types (muscle, intramuscular fat, and intermuscular fat) in marbled beef of Japanese Black cattle revealed that most metabolites are abundant in the muscle tissue. Several metabolites (medium-chain fatty acids, etc.) involved in triacylglycerol synthesis were uniquely detected in fat tissue. Additionally, the results of multivariate analysis suggest that GC/MS analysis of metabolites can distinguish between cattle breeds. These results provide useful information for the analysis of meat quality using GC/MS-based metabolomic analysis. ABBREVIATIONS: GC/MS: gas chromatography-mass spectrometry; NMR: nuclear magnetic resonance; MS: mass spectrometry; IS: 2-isopropylmalic acid; MSTFA: N-Methyl-N-trimethylsilyltrifluoroacetamide; CV: coefficient of variation; TBS: Tris-buffered saline; MHC: myosin fast type; PCA: principal component analysis; OPLS-DA: orthogonal partial least-squares discriminant analysis; O2PLS: two-way orthogonal partial least-squares
The bovine growth hormone gene (bGH) possesses three haplotypes, A, B and C, that differ by amino acid mutations at positions 127 and 172 in the fifth exon: (leucine 127, threonine 172), (valine 127, threonine 172) and (valine 127, methionine 172) respectively. The correlation between meat quality or carcass weight and these haplotypes was investigated in Japanese black cattle. Altogether, 940 bGH haplotypes were compared with respect to six carcass traits: carcass weight, longissimus muscle area, rib thickness, subcutaneous fat thickness, beef marbling score and beef colour. The frequency of the B haplotype was higher (0.421) than that of A (0.269) and C (0.311). High carcass weight and low beef marbling were associated with haplotype A (p < 0.05 and p < 0.01 respectively), whereas beef marbling was increased by haplotype C (p < 0.05). Estimated regression coefficient of the A haplotype substitution effect for carcass weight and beef marbling score were 5.55 (13.1% of the phenotypic SD) and -0.31 (17.0%) respectively. That of the C haplotype for beef marbling score was 0.20 (11.0%). The other traits showed no relationship to the haplotypes examined. The results of this investigation suggest that information pertaining to bGH polymorphisms in Japanese black cattle could be used to improve the selection of meat traits.
The present study was conducted to reveal the effects of calcium and bicarbonate on the occurrence of head-to-head agglutination in ejaculated boar spermatozoa in vitro. Boar spermatozoa were washed and incubated in a modified Krebs-Ringer bicarbonate (mKRB) in a 37 degrees C CO2 incubator (5% CO2 in air) for 1-5 h. Before and after the incubation, aliquots of each sperm sample were fixed, smeared on glass slides, and stained with a phosphate-buffered solution of Giemsa to assess the percentages of head-to-head agglutinated spermatozoa. Before the incubation, only 5-12% of the spermatozoa were agglutinated. After the 1-h incubation, however, the percentage of head-to-head agglutinated spermatozoa rose to approximately 50%, followed by only minor increases thereafter. This rise was dependent on the concentrations of calcium chloride contained in the mKRB and was attenuated by the addition of 2 mM [ethylenebis(oxyethylenenitrilo)]tetra-acetic acid (EGTA) to the medium. Moreover, the replacement of sodium bicarbonate with 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (Hepes) in the medium and treatment with ruthenium red, which have both been shown previously to inhibit calcium uptake by boar spermatozoa, significantly reduced the rise. Based on these findings, it was concluded that extracellular calcium and bicarbonate are key factors regulating head-to-head agglutination in boar spermatozoa. The possible relationship between agglutinability and the fertilizing ability of boar spermatozoa is also discussed.
To detect quantitative trait loci (QTL) that influence economically important traits in a purebred Japanese Black cattle population, we performed a preliminary genome-wide scan using 187 microsatellite markers across a paternal half-sib family composed of 258 offspring. We located six QTL at the 1% chromosome-wise level on bovine chromosomes (BTA) 4, 6, 13, 14 and 21. A second screen of these six QTL regions using 138 additional paternal offspring half-sib from the same sire, provided further support for five QTL: carcass weight on BTA14 (22-39 cM), one for rib thickness on BTA6 (27-58 cM) and three for beef marbling score (BMS) on BTA4 (59-67 cM), BTA6 (68-89 cM) and BTA21 (75-84 cM). The location of QTL for subcutaneous fat thickness on BTA13 was not supported by the second screen (P > 0.05). We determined that the combined contribution of the three QTLs for BMS was 10.1% of the total variance. The combined phenotypic average of these three Q was significantly different (P < 0.001) from those of other allele combinations. Analysis of additional half-sib families will be necessary to confirm these QTL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.