Multidrug-resistant strains of Salmonella are now encountered frequently, and the rates of multidrug resistance have increased considerably in recent years. Here, we report that the two-component regulatory system BaeSR increases multidrug and metal resistance in Salmonella through the induction of drug efflux systems. Screening of random fragments of genomic DNA for the ability to increase -lactam resistance in Salmonella enterica led to the isolation of a plasmid containing baeR, which codes for the response regulator of BaeSR. When overexpressed, baeR significantly increased the resistance of the ⌬acrB strain to oxacillin, cloxacillin, and nafcillin. baeR overexpression conferred resistance to novobiocin and deoxycholate, as well as to -lactams in Salmonella. The increase in drug resistance caused by baeR overexpression was completely suppressed by deletion of the multifunctional outer membrane channel gene tolC. TolC interacts with different drug efflux systems. Among the nine drug efflux systems in Salmonella, quantitative real-time PCR analysis showed that BaeR induced the expression of acrD and mdtABC. Double deletion of these two genes completely suppressed BaeR-mediated multidrug resistance, whereas single deletion of either gene did not. The promoter regions of acrD and mdtABC harbor binding sites for the response regulator BaeR, which activates acrD and mdtABC transcription in response to indole, copper, and zinc. In addition to their role in multidrug resistance, we found that BaeSR, AcrD, and MdtABC contribute to copper and zinc resistance in Salmonella. Our results indicate that the BaeSR system increases multidrug and metal resistance in Salmonella by inducing the AcrD and MdtABC drug efflux systems. We found a previously uncharacterized physiological role for the AcrD and MdtABC multidrug efflux systems in metal resistance.
Salmonella enterica serovar Typhimurium has at least nine
multidrug efflux pumps. Among these pumps, AcrAB is effective in generating
drug resistance and has wide substrate specificity. Here we report that
indole, bile, and an Escherichia coli conditioned medium induced the
AcrAB pump in Salmonella through a specific regulator, RamA. The
RamA-binding sites were located in the upstream regions of acrAB and
tolC. RamA was required for indole induction of acrAB. Other
regulators of acrAB such as MarA, SoxS, Rob, SdiA, and AcrR did not
contribute to acrAB induction by indole in Salmonella.
Indole activated ramA transcription, and overproduction of RamA
caused increased acrAB expression. In contrast, induction of
ramA was not required for induction of acrAB by bile. Cholic
acid binds to RamA, and we suggest that bile acts by altering pre-existing
RamA. This points to two different AcrAB regulatory modes through RamA. Our
results suggest that RamA controls the Salmonella AcrAB-TolC
multidrug efflux system through dual regulatory modes in response to
environmental signals.
Salmonella enterica serovar Typhimurium has at least nine multidrug efflux pumps. Among these, AcrAB is constitutively expressed and is the most efficient, playing a role in both drug resistance and virulence. The acrAB locus is induced by indole, Escherichia coli-conditioned medium, and bile salts. This induction is dependent on RamA through the binding sequence in the upstream region of acrA that binds RamA. In the present study, we made a detailed investigation of the ramA and acrAB induction mechanisms in Salmonella in response to indole, a biological oxidant for bacteria. We found that acrAB and ramA induction in response to indole is dependent on RamR. However, the cysteine residues of RamR do not play a role in the induction of ramA in response to indole, and the oxidative effect of indole is therefore not related to ramA induction via RamR. Furthermore, we showed that paraquat, a superoxide generator, induces acrAB but not ramA. We further discovered that the mechanism of acrAB induction in response to paraquat is dependent on SoxS. The data indicate that there are at least two independent induction pathways for acrAB in response to extracellular signals such as indole and paraquat. We propose that Salmonella utilizes these regulators for acrAB induction in response to extracellular signals in order to adapt itself to environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.