Near-infrared light propagation in various models of the adult head is analyzed by both time-of-flight measurements and mathematical prediction. The models consist of three- or four-layered slabs, the latter incorporating a clear cerebrospinal fluid (CSF) layer. The most sophisticated model also incorporates slots that imitate sulci on the brain surface. For each model, the experimentally measured mean optical path length as a function of source-detector spacing agrees well with predictions from either a Monte Carlo model or a finite-element method based on diffusion theory or a hybrid radiosity-diffusion theory. Light propagation in the adult head is shown to be highly affected by the presence of the clear CSF layer, and both the optical path length and the spatial sensitivity profile of the models with a CSF layer are quite different from those without the CSF layer. However, the geometry of the sulci and the boundary between the gray and the white matter have little effect on the detected light distribution.
In near-infrared spectroscopy and imaging, the sensitivity of the detected signal to brain activation and the volume of interrogated tissue are clinically important. Light propagation in adult and neonatal heads is strongly affected by the presence of a low-scattering cerebrospinal fluid layer. The effect of the heterogeneous structure of the head on light propagation in the adult brain is likely to be different from that in the neonatal brain because the thickness of the superficial tissues and the optical properties of the brain of the neonatal head are quite different from those of the adult head. In this study, light propagation in the two-dimensional realistic adult and neonatal head models, whose geometries are generated from a magnetic resonance imaging scan of the human heads, is predicted by Monte Carlo simulation. The sandwich structure, which is a low-scattering cerebrospinal fluid layer held between the high-scattering skull and gray matter, strongly affects light propagation in the brain of the adult head. The sensitivity of the absorption change in the gray matter is improved; however, the intensely sensitive region is confined to the shallow region of the gray matter. The high absorption of the neonatal brain causes a similar effect on light propagation in the head. The intensely sensitive region in the neonatal brain is confined to the gray matter; however, the spatial sensitivity profile penetrates into the deeper region of the white matter.
It is important for near-infrared spectroscopy (NIRS) and imaging to estimate the sensitivity of the detected signal to the change in hemoglobin that results from brain activation and the volume of tissue interrogated for a specific source-detector fiber spacing. In this study light propagation in adult head models is predicted by Monte Carlo simulation to investigate the effect of the superficial tissue thickness on the partial optical path length in the brain and on the spatial sensitivity profile. In the case of source-detector spacing of 30 mm, the partial optical path length depends mainly on the depth of the inner skull surface whereas the spatial sensitivity profile is significantly affected by the thickness of the cerebrospinal fluid layer. The mean optical path length that can be measured by time-resolved experiments increases when the skull thickness increases whereas the partial mean optical path length in the brain decreases when the skull thickness increases. These results indicate that it is not appropriate to use the mean optical path length as an alternative to the partial optical path length to compensate the NIRS signal for the difference in sensitivity caused by variation of the superficial tissue thickness.
Adequate modeling of light propagation in a human head is important for quantitative near-infrared spectroscopy and optical imaging. The presence of a nonscattering cerebrospinal fluid (CSF) that surrounds the brain has been previously shown to have a strong effect on light propagation in the head. However, in reality, a small amount of scattering is caused by the arachnoid trabeculae in the CSF layer. In this study, light propagation in an adult head model with discrete scatterers distributed within the CSF layer has been predicted by Monte Carlo simulation to investigate the effect of the small amount of scattering caused by the arachnoid trabeculae in the CSF layer. This low scattering in the CSF layer is found to have little effect on the mean optical path length, a parameter that can be directly measured by a time-resolved experiment. However, the partial optical path length in brain tissue that relates the sensitivity of the detected signal to absorption changes in the brain is strongly affected by the presence of scattering within the CSF layer. The sensitivity of the near-infrared signal to hemoglobin changes induced by brain activation is improved by the effect of a low-scattering CSF layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.