This article is devoted to studying the initial value problem for a thirdorder dispersive equation for closed curves into Kähler manifolds. This equation is a geometric generalization of a two-sphere valued system modeling the motion of vortex filament. We prove the local existence theorem by using geometric analysis and classical energy method.
We discuss a short-time existence theorem of solutions to the initial value problem for a third order dispersive flow for closed curves into a compact almost Hermitian manifold. Our equations geometrically generalize a physical model describing the motion of vortex filament. The classical energy method cannot work for this problem since the almost complex structure of the target manifold is not supposed to be parallel with respect to the Levi-Civita connection. In other words, a loss of one derivative arises from the covariant derivative of the almost complex structure. To overcome this difficulty, we introduce a bounded pseudodifferential operator acting on sections of the pullback bundle, and eliminate the loss of one derivative from the partial differential equation of the dispersive flow.
Abstract. We study the structure of differential equations of one-dimensional dispersive flows into compact Riemann surfaces. These equations geometrically generalize two-sphere valued systems modeling the motion of vortex filament. We define a generalized Hasimoto transform by constructing a good moving frame, and reduce the equation with values in the induced bundle to a complex valued equation which is easy to handle. We also discuss the relationship between our reduction and the theory of linear dispersive partial differential equations.
ABSTRACT. We prove global existence of solutions to the initial value problem for a third order dispersive flow into compact locally Hermitian symmetric spaces. The equation we consider generalizes two-sphere-valued completely integrable systems modelling the motion of vortex filament. Unlike onedimensional Schrödinger maps, our third order equation is not completely integrable under the curvature condition on the target manifold in general. The idea of our proof is to exploit two conservation laws and an energy which is not necessarily preserved in time but does not blow up in finite time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.