A highly safe 100 Wh-class laminated lithium ion battery (LIB) was developed. For ensuring safety of the LIB, a liquid electrolyte was quasi-solidified at silica surfaces. For the liquid electrolyte, a solvate ionic liquid (SIL), which is an equimolar complex of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and tetraethylene glycol dimethyl ether (G4), Li(G4)TFSA, was used. For enhancing discharge-rate capability, Li(G4)TFSA was diluted by propylene carbonate (PC). Then, for enhancing cycle life, vinylene carbonate (VC) and hexafluorophosphate anion (PF 6 −)based salt were added for forming an solid-electrolyte interphase (SEI) on the graphite negative electrode and an AlF 3 at the surface of the aluminum current collector of the positive electrode, respectively. The assembled LIB exhibited initial discharge capacity of 32 Ah and coulombic efficiency of 76%. Regardless of high energy-type, the developed battery exhibited high discharge capacity of 26.2 Ah at 2 C. Its retention ratio of discharge capacity at the 118th cycle is high, i.e., 96%. The developed LIB (with energy density of 363 Wh L −1) generated neither fire nor smoke in a nail-penetration test. These results suggest that the developed LIB has high safety compared to a LIB comprised of a conventional organic liquid electrolyte.
The formation and growth mechanism of a solid-electrolyte interphase (SEI) on a graphite-based negative electrode was investigated to enhance the cycle life of lithium ion batteries with a quasi-solid state electrolyte (QSE). In a QSE, liquid constituents including solvate ionic liquid (SIL), diluting solvent, and additives are quasi-solidified on surface of silica particles, which ensures the safety of a 100 Wh class laminated cell. For the SIL, an equimolar complex composed of tetraethylene glycol dimethyl ether (G4) and lithium bis(trifluoromethanesulfonyl)amide (LiTFSA), was utilized. Propylene carbonate (PC) was used as diluting solvent to enhance the ionic conductivity of the SIL. Vinylene carbonate (VC) additive was introduced to form a robust SEI for inhibiting the reductive decomposition of G4 and PC. Nuclear magnetic resonance and hard X-ray photoelectron spectroscopy revealed that the decompositions of LiTFSA, PC, and G4 contributed to the SEI formation at the initial charge. During charge-discharge cycles, continuous decompositions of G4 and PC were a major reason for the SEI growth. To suppress the decomposition, charging at a low rate was introduced at beginning of the initial charge to enhance the VC decomposition and the robust SEI formation. Consequently, the decomposition of the QSE was inhibited, which enhanced its cycle life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.