Purpose: Myeloid suppressor (Gr-1 + /CD11b + ) cells accumulate in the spleens of tumor-bearing mice where they contribute to immunosuppression by inhibiting the function of CD8 + Tcells and by promoting tumor angiogenesis. Elimination of these myeloid suppressor cells may thus significantly improve antitumor responses and enhance effects of cancer immunotherapy, although to date few practical options exist. Experimental Design: The effect of the chemotherapy drug gemcitabine on the number of (Gr-1 + /CD11b + ) cells in the spleens of animals bearing large tumors derived from five cancer lines grown in both C57Bl/6 and BALB/c mice was analyzed. Suppressive activity of splenocytes from gemcitabine-treated and control animals was measured in natural killer (NK) cell lysis and Winn assays. The impact of myeloid suppressor cell activity was determined in an immunogene therapy model using an adenovirus expressing IFN-h. Results:This study shows that the chemotherapeutic drug gemcitabine, given at a dose similar to the equivalent dose used in patients, was able to dramatically and specifically reduce the number of myeloid suppressor cells found in the spleens of animals bearing large tumors with no significant reductions in CD4 + T cells, CD8 + T cells, NK cells, macrophages, or B cells. The loss of myeloid suppressor cells was accompanied by an increase in the antitumor activity of CD8 + T cells and activated NK cells. Combining gemcitabine with cytokine immunogene therapy using IFN-h markedly enhanced antitumor efficacy. Conclusions: These results suggest that gemcitabine may be a practical strategy for the reduction of myeloid suppressor cells and should be evaluated in conjunction with a variety of immunotherapy approaches.
We designed and synthesized new alkyl-functionalized organic dyes, MK-1 and MK-2, for dye-sensitized solar cells (DSSCs). Based on the MK-2 dye, a high performance of efficiency (eta, 7.7%; short-circuit current density Jsc = 14.0 mA cm-2, open-circuit voltage Voc = 0.74 V, and fill factor FF = 0.74) was achieved under AM 1.5 G irradiation (100 mW cm-2). Remarkably, the relatively higher Voc for DSSCs based on MK-1 and MK-2 dyes, which have long alkyl chains, were observed among the organic dyes caused by the increasing of the electron lifetime in the conduction band of TiO2. Our molecular design of alkyl-functionalized dyes strongly suggests the promising performance of molecular photovoltaics based on organic dyes.
Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPα checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPα interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.