Recent record lows of Arctic summer sea ice extent are found to be triggered by the Arctic atmospheric Dipole Anomaly (DA) pattern. This local, second–leading mode of sea–level pressure (SLP) anomaly in the Arctic produced a strong meridional wind anomaly that drove more sea ice out of the Arctic Ocean from the western to the eastern Arctic into the northern Atlantic during the summers of 1995, 1999, 2002, 2005, and 2007. In the 2007 summer, the DA also enhanced anomalous oceanic heat flux into the Arctic Ocean via Bering Strait, which accelerated bottom and lateral melting of sea ice and amplified the ice–albedo feedback. A coupled ice–ocean model was used to confirm the historical record lows of summer sea ice extent.
Hydrographic data collected from research cruises, bottom-anchored moorings, driftingIce-Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km 3 of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing accompanied by sea ice melt, a wind-forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice-Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year-to-year variability, or the more subtle interannual variations.
Plain Language AbstractThe Beaufort Gyre centered in the Canada Basin of the Arctic Ocean is the major reservoir of fresh water in the Arctic. The primary focus of this study is on quantifying variability and trends in liquid (water) and solid (sea ice) freshwater content in this region. The Beaufort Gyre Exploration Program was initiated in 2003 to synthesize results of historical data analysis, design and conduct long-term observations, and to provide information for numerical modeling under the umbrella of the FAMOS (Forum for Arctic Observing and Modeling Synthesis) project. The data collected from research cruises, moorings, Ice-Tethered Profiler observations, and satellite altimetry document an increase of more than 6,400 km 3 of liquid freshwater content from 2003 to 2018, a 40% growth relative to the climatology of the 1970s. This fresh water volume is comparable to the fresh water volume released to the sub-arctic seas during the Great Salinity Anomaly episode of the 1970s. Thus, since the 2000s, the stage has been set for another possible release of fresh water to lower latitudes with accompanying climate impacts, including changes to sea ice conditions, ocean circulation, and ecosystems of the Sub-Arctic similar to the influence of the Great Salinity Anomaly observed in the 1970s.
The future conditions of Arctic sea ice and marine ecosystems are of interest not only to climate scientists, but also to economic and governmental bodies. However, the lack of widespread, year-long biogeochemical observations remains an obstacle to understanding the complicated variability of the Arctic marine biological pump. Here we show an early winter maximum of sinking biogenic flux in the western Arctic Ocean and illustrate the importance of shelf-break eddies to biological pumping from wide shelves to adjacent deep basins using a combination of year-long mooring observations and three-dimensional numerical modelling. The sinking flux trapped in the present study included considerable fresh organic material with soft tissues and was an order of magnitude larger than previous estimates. We predict that further reductions in sea ice will promote the entry of Pacific-origin biological species into the Arctic basin and accelerate biogeochemical cycles connecting the Arctic and subarctic oceans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.