Tissue-resident macrophages can derive from yolk sac macrophages (YS-Macs), fetal liver monocytes (FL-MOs), or adult bone-marrow monocytes (BM-MOs). The relative capacity of these precursors to colonize a niche, self-maintain, and perform tissue-specific functions is unknown. We simultaneously transferred traceable YS-Macs, FL-MOs, and BM-MOs into the empty alveolar macrophage (AM) niche of neonatal Csf2rb(-/-) mice. All subsets produced AMs, but in competition preferential outgrowth of FL-MOs was observed, correlating with their superior granulocyte macrophage-colony stimulating factor (GM-CSF) reactivity and proliferation capacity. When transferred separately, however, all precursors efficiently colonized the alveolar niche and generated AMs that were transcriptionally almost identical, self-maintained, and durably prevented alveolar proteinosis. Mature liver, peritoneal, or colon macrophages could not efficiently colonize the empty AM niche, whereas mature AMs could. Thus, precursor origin does not affect the development of functional self-maintaining tissue-resident macrophages and the plasticity of the mononuclear phagocyte system is largest at the precursor stage.
The role of the unfolded protein response (UPR) and endoplasmic reticulum (ER) stress in homeostasis of the immune system is incompletely understood. Here we found that dendritic cells (DCs) constitutively activated the UPR sensor IRE-1α and its target, the transcription factor XBP-1, in the absence of ER stress. Loss of XBP-1 in CD11c+ cells led to defects in phenotype, ER homeostasis and antigen presentation by CD8α+ conventional DCs, yet the closely related CD11b+ DCs were unaffected. Whereas the dysregulated ER in XBP-1-deficient DCs resulted from loss of XBP-1 transcriptional activity, the phenotypic and functional defects resulted from regulated IRE-1α-dependent degradation (RIDD) of mRNAs, including those encoding CD18 integrins and components of the major histocompatibility complex (MHC) class I machinery. Thus, a precisely regulated feedback circuit involving IRE-1α and XBP-1 controls the homeostasis of CD8α+ conventional DCs.
Titanium dioxide (TiO 2 ), also known as titanium (IV) oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO 2 nanoparticles (NP) by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cytoand -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity) and intracellularly. The present study determines the role of TiO 2 -NP (anatase, ∅ < 100 nm) using several parameters such as cyto-and genotoxicity, DNA-adduct formation and generation of free radicals following its uptake by human lung cells in vitro. For comparison, iron containing nanoparticles (hematite, Fe 2 O 3 , ∅ < 100 nm) were used. The results of this study showed that both types of NP were located in the cytosol near the nucleus. No particles were found inside the nucleus, in mitochondria or ribosomes. Human lung fibroblasts (IMR-90) were more sensitive regarding cyto-and genotoxic effects caused by the NP than human bronchial epithelial cells (BEAS-2B). In contrast to hematite NP, TiO 2 -NP did not induce DNAbreakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS) was measured acellularly (without any photocatalytic activity) as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG) was observed in IMR-90 cells exposed to TiO 2 -NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO 2 -and Fe 2 O 3 -NP. Whereas TiO 2 -NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNAadduct formation, Fe 2 O 3 -NP were clastogenic (induction of DNA-breakage) and required reducing conditions for radical formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.