Combined heat and power (CHP) plants are efficient regarding fuel, costs, and emissions compared to the separate generation of heat and electricity. Sinking revenues from sales of electricity due to sinking market prices endanger the economically viable operation of the plants. The integration of heat pumps (HP) and thermal energy storages (TESs) represents an option to increase the flexibility of CHP plants so that electricity can be produced only when the market conditions are favorable. The investigated district heating system is located in Germany, where the electricity market is influenced by a high share of renewable energies. The price-based unit-commitment and dispatch problem is modeled as a mixed integer linear program (MILP) with a temporal resolution of 1 h and a planning horizon of 1 yr. This paper presents the optimal operation of a TES unit and a HP in combination with CHP plants as well as synergies or competitions between them. Coal and gas-fired CHP plants with back pressure or extraction condensing steam turbines (STs) are considered, and their results are compared to each other.
Reduced models of combined heat and power plants are required for different applications. Among other usages, they are implemented as mixed integer linear programs (MILP) in energy market models or price-based unit commitment problems to study the economic feasibility and optimal operation strategies of different units. Generic models are particularly useful when limited information is available for each considered plant. This paper presents a MILP modeling approach for combined heat and power (CHP) plants. The approach is based on energy and exergy balances and a few typical plant characteristics for different operating conditions. The reduction of electrical power output due to heat extraction is estimated by the transferred exergy to the district heating network. Furthermore, the accuracy, strengths and limitations of this approach are investigated for various CHP plant types with extraction condensing turbines designed for district heating systems. Therefore, detailed thermodynamic cycle simulations of CHP plants including part load operations are used to obtain the real plant operating conditions to compare them to the results of the described generic approach. The validation of the reduced, generic model shows that the accuracy mainly depends on the effectiveness of the heat extraction from the CHP plant. In addition, it can be seen that the main advantage of the presented exergy-based method is the inherent consideration of the feed flow temperature for the calculation of the power reduction due to heat extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.