Recently, cDNAs encoding novel RFamide-related peptides (RFRPs) have been reported in the mammalian brains by a gene database search and the deduced RFRPs have been suggested to participate in neuroendocrine and pain mechanisms in the rat. Two peptides have been predicted to be encoded in the cDNA of rodent RFRPs. To assess precise functions of rodent RFRPs in the brain, in the present study we identified a naturally occurring RFRP in the rat hypothalamus by immunoaffinity purification combined with mass spectrometry (MS). The affinity chromatography showed that the rat hypothalamus contained RFRP-like immunoreactivity. The immunoreactive material was analyzed by a nanoflow electrospray ionization time-of-flight MS followed by tandem MS analysis. The mass peak corresponding to octadecapeptide was detected at 1010.54 m/z ([M+2H] 2 ) and its sequence, ANMEAGTMSHFPSLPQRF-NH 2 , was revealed by the fragmentation, showing a mature form encoded in the cDNA sequence of RFRPs. The identified endogenous RFRP will aid not only in defining its physiological roles but also facilitate the development of its agonists and antagonists in the rodent brain. ß
Recently, we identified novel avian and amphibian hypothalamic neuropeptides that inhibited gonadotropin release and stimulated growth hormone release. They were characterized by a similar structure including the C-terminal LPLRF-NH 2 motif. To clarify that the expression of these novel hypothalamic neuropeptides is a conserved property in vertebrates, we characterized a cDNA encoding a similar novel peptide, having LPLRF-NH 2 from the goldfish brain, by a combination of 3¢ and 5¢ rapid amplification of cDNA ends (RACE). The deduced peptide precursor consisted of 197 amino acid residues, encoding three putative peptide sequences that included -LPXRF (where X is L or Q) at their C-termini. Mass spectrometric analyses revealed that a tridecapeptide (SGTGLSATLPQRF-NH 2 ) was derived from the precursor in the brain as an endogenous ligand. Southern blotting analysis of reverse-transcriptase-mediated PCR products demonstrated a specific expression of the goldfish peptide gene in the diencephalon. In situ hybridization revealed the cellular localization of goldfish peptide mRNA in the nucleus posterioris periventricularis in the hypothalamus. Immunoreactive cell bodies were also restricted to the the nucleus posterioris periventricularis and the nervus terminalis and immunoreactive fibers were distributed in several brain regions including the nucleus lateralis tuberis pars posterioris and pituitary. Thus, the goldfish hypothalamus expresses a novel neuropeptide containing the C-terminal -LPQRF-NH 2 sequence, which may possess multiple regulatory functions and act, at least partly, on the pituitary to regulate pituitary hormone release.
We present the first evidence of a system of four bioactive peptides that affect the stiffness of sea cucumber dermis. The body wall dermis of sea cucumbers consists of catch connective tissue that is characterized by quick and drastic stiffness changes under nervous control. The peptides were isolated from the body wall, their amino acid sequences determined, and identical peptides synthesized. Two peptides, which we named holokinins, are homologous with bradykinin. We tested the effect of the peptides on the mechanical properties of sea cucumber dermis. Both of the holokinins softened the dermis, and a pentapeptide that we designated as NGIWYamide stiffened it. Both effects were reversibly suppressed by anesthesia with menthol. We called the fourth peptide stichopin; it had no direct effect on the stiffness of the dermis but suppressed action of the neurotransmitter acetylcholine reversibly. The results suggest that the peptides are neuropeptides and are part of a sophisticated system of neurotransmitters and neuromodulators that controls the connective tissue stiffness of sea cucumber dermis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.