Allogeneic natural killer (NK) cells are used for adoptive immunotherapy after stem cell transplantation. In order to overcome technical limitations in NK cell purification and activation, the following study investigates the impact of different variables on NK cell recovery, cytotoxicity, and T-cell depletion during good manufacturing practice (GMP)-grade NK cell selection. Forty NK cell products were derived from 54 unstimulated donor leukaphereses using immunomagnetic CD3 T-cell depletion, followed by a CD56 cell enrichment step. For T-cell depletion, either the depletion 2.1 program in single or double procedure (D2.11depl, n = 18; D2.12depl, n = 13) or the faster depletion 3.1 (D3.1, n = 9) was used on the CliniMACS instrument. Seventeen purified NK cell products were activated in vitro by IL-2 for 12 days. The whole process resulted in a median number of 7.59 × 108 CD56+CD3− cells with both purity and viability of 94%, respectively. The T-cell depletion was significantly better using D2.11depl/2depl compared to D3.1 (log 4.6/log 4.9 vs. log 3.7; p < 0.01) and double procedure in two stages led always to residual T cells below 0.1%. In contrast D3.1 was superior to D2.11depl/2depl with regard to recovery of CD56+CD3− NK cells (68% vs. 41%/38%). Concomitant monocytes and especially IL-2 activation led to increased NK cell activity against malignant target cells compared to unstimulated NK cells, which correlated with both up-regulation of natural cytotoxicity receptors and intracellular signaling. Overall, wide variations in the NK cell expansion rate and the distribution of NK cell subpopulations were found. In conclusion, our results indicate that GMP-grade purification of NK cells might be improved by a sequential processing of T-cell depletion program D2.1 and D3.1. In addition NK cell expansion protocols need to be further optimized.
5-Lipoxygenase (5-LO) is the key enzyme in leukotriene biosynthesis. Leukotrienes are mediators of the innate immune system and inflammatory processes, and they might also be involved in cancer development. MicroRNAs (miRNAs) are important translational regulators and have been shown to be involved in development, differentiation, and cancer. Unraveling the miRNA network is important for understanding the cellular regulation processes. We identified two new miRNAs, miR-19a-3p and miR-125b-5p, regulating 5-LO and confirmed direct interaction by reporter gene assays. Furthermore, we investigated the regulation of 5-LO by these two miRNAs in several cell types. Inhibition of both miRNAs by antagomirs during differentiation of the myeloid cell line Mono Mac 6 led to a significant increase in 5-LO protein expression. Stimulation of human T lymphocytes with PHA resulted in a strong downregulation of 5-LO mRNA expression and in the induction of miR-19a-3p. The inhibition of miR-19a-3p with an antagomir led to a significant increase in 5-LO mRNA expression in T lymphocytes. Taken together, our data reveal that miR-19a-3p and miR-125b-5p target 5-LO in a cell type– and stimulus-specific manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.