The earliest and most extensive societal exposures to engineered nanoparticles are likely to occur in the workplace. Until toxicologic and health effects research moves forward to characterize more broadly the potential hazards of nanoparticles and to provide a scientific basis for appropriate control of nanomaterials in the workplace, current and future workers may be at risk from occupational exposures. This article reviews a conceptual framework for occupational risk management as applied to engineered nanomaterials and describes an associated approach for controlling exposures in the presence of uncertainty. The framework takes into account the potential routes of exposure and factors that may influence biological activity and potential toxicity of nanomaterials; incorporates primary approaches based on the traditional industrial hygiene hierarchy of controls involving elimination or substitution, engineering controls, administrative controls, and use of personal protective equipment; and includes valuable secondary approaches involving health surveillance and medical monitoring.
Given the almost limitless variety of nanomaterials, it will be virtually impossible to assess the possible occupational health hazard of each nanomaterial individually. The development of science-based hazard and risk categories for nanomaterials is needed for decision-making about exposure control practices in the workplace. A possible strategy would be to select representative (benchmark) materials from various mode of action (MOA) classes, evaluate the hazard and develop risk estimates, and then apply a systematic comparison of new nanomaterials with the benchmark materials in the same MOA class. Poorly soluble particles are used here as an example to illustrate quantitative risk assessment methods for possible benchmark particles and occupational exposure control groups, given mode of action and relative toxicity. Linking such benchmark particles to specific exposure control bands would facilitate the translation of health hazard and quantitative risk information to the development of effective exposure control practices in the workplace. A key challenge is obtaining sufficient dose-response data, based on standard testing, to systematically evaluate the nanomaterials' physical-chemical factors influencing their biological activity. Categorization processes involve both science-based analyses and default assumptions in the absence of substance-specific information. Utilizing data and information from related materials may facilitate initial determinations of exposure control systems for nanomaterials.
ObjectivesThere are some common occupational agents and exposure circumstances for which evidence of carcinogenicity is substantial but not yet conclusive for humans. Our objectives were to identify research gaps and needs for 20 agents prioritized for review based on evidence of widespread human exposures and potential carcinogenicity in animals or humans.Data sourcesFor each chemical agent (or category of agents), a systematic review was conducted of new data published since the most recent pertinent International Agency for Research on Cancer (IARC) Monograph meeting on that agent.Data extractionReviewers were charged with identifying data gaps and general and specific approaches to address them, focusing on research that would be important in resolving classification uncertainties. An expert meeting brought reviewers together to discuss each agent and the identified data gaps and approaches.Data synthesisSeveral overarching issues were identified that pertained to multiple agents; these included the importance of recognizing that carcinogenic agents can act through multiple toxicity pathways and mechanisms, including epigenetic mechanisms, oxidative stress, and immuno- and hormonal modulation.ConclusionsStudies in occupational populations provide important opportunities to understand the mechanisms through which exogenous agents cause cancer and intervene to prevent human exposure and/or prevent or detect cancer among those already exposed. Scientific developments are likely to increase the challenges and complexities of carcinogen testing and evaluation in the future, and epidemiologic studies will be particularly critical to inform carcinogen classification and risk assessment processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.