Reversing or slowing the aging process brings great promise to treat or prevent age‐related disease, and targeting the hallmarks of aging is a strategy to achieve this. Epigenetics affects several if not all of the hallmarks of aging and has therefore emerged as a central target for intervention. One component of epigenetic regulation involves histone deacetylases (HDAC), which include the “classical” histone deacetylases (of class I, II, and IV) and sirtuin deacetylases (of class III). While targeting sirtuins for healthy aging has been extensively reviewed elsewhere, this review focuses on pharmacologically inhibiting the classical HDACs to promote health and longevity. We describe the theories of how classical HDAC inhibitors may operate to increase lifespan, supported by studies in model organisms. Furthermore, we explore potential mechanisms of how HDAC inhibitors may have such a strong grasp on health and longevity, summarizing their links to other hallmarks of aging. Finally, we show the wide range of age‐related preclinical disease models, ranging from neurodegeneration to heart disease, diabetes to sarcopenia, which show improvement upon HDAC inhibition.
Lifespan in eukaryotic species can be prolonged by shifting from cellular states favouring growth to those favouring maintenance and stress resistance. For instance, perturbations in mitochondrial oxidative phosphorylation (OXPHOS) can shift cells into this latter state and extend lifespan. Because mitochondria rely on proteins synthesized from nuclear as well as mitochondrial DNA, they need to constantly send and receive messages from other compartments of the cell in order to function properly and maintain homeostasis, and lifespan extension is often dependent on this cross-compartmental signalling. Here, we describe the mechanisms of bi-directional mitochondrial cross-compartmental signalling resulting in proteostasis and longevity. These proteostasis mechanisms are highly context-dependent, governed by the origin and extent of stress. Furthermore, we discuss the translatability of these mechanisms and explore therapeutic developments, such as the antibiotic studies targeting mitochondria or mitochondria-derived peptides as therapies for age-related diseases such as neurodegeneration and cancer.
This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.