As a result of the outbreak and diffusion of SARS-CoV-2, there has been a directive to advance medical working conditions. In dentistry, airborne particles are produced through aerosolization facilitated by dental instruments. To develop methods for reducing the risks of infection in a confined environment, understanding the nature and dynamics of these droplets is imperative and timely. This study provides the first evidence of aerosol droplet formation from an ultrasonic scalar under simulated oral conditions. State-of-the-art optical flow tracking velocimetry and shadowgraphy measurements are employed to quantitatively measure the flow velocity, trajectories and size distribution of droplets produced during a dental scaling process. The droplet sizes are found to vary from 5 µm to 300 µm; these correspond to droplet nuclei that could carry viruses. The droplet velocities also vary between 1.3 m s −1 and 2.6 m s −1 . These observations confirm the critical role of aerosols in the transmission of disease during dental procedures, and provide invaluable knowledge for developing protocols and procedures to ensure the safety of both dentists and patients.
We experimentally examine pressure-driven flows of 1%, 3%, and 5% dilute suspensions over and through a porous media model. The flow of non-colloidal, non-Brownian suspensions of rigid and spherical particles suspended in a Newtonian fluid is considered at very low Reynolds numbers. The model of porous media consists of square arrays of rods oriented across the flow in a rectangular channel. Systematic experiments using high-spatial-resolution planar particle image velocimetry (PIV) and index-matching techniques are conducted to accurately measure the velocity measurements of both very dilute and solvent flows inside and on top of the porous media model. We found that for 1%, 3%, and 5% dilute suspensions the fully-developed velocity profile inside the free-flow region are well predicted by the exact solution derived from coupling the Navier-Stokes equation within the free flow-region and the volume-averaged Navier Stokes (VANS) equation for the porous media. We further analyze the velocity and shear rate at the suspension-porous interface and compare these data with those of pure suspending fluid and the related analytical solutions. The exact solution is used to define parameters necessary to calculate key values to analyze the porous media/fluid interaction such as Darcy velocity, penetration depth, and fractional ratios of the mass flow rate. These parameters are comparable between the solvent, dilute suspensions, and exact solution. However, we found clear effects between the solvent and the suspensions which shows different physical phenomenon occurring when particles are introduced into a flow moving over and through a porous media.
Graphical abstract Throughout 2020 and beyond, the entire world has observed a continuous increase in the infectious spread of the novel coronavirus (SARS-CoV-2) otherwise known as COVID-19. The high transmission of this airborne virus has raised countless concerns regarding safety measures employed in the working conditions for medical professionals. Specifically, those who perform treatment procedures on patients which intrinsically create mists of fine airborne droplets, i.e., perfect vectors for this and other viruses to spread. The present study focuses on understanding the splatter produced due to a common dentistry technique to remove plaque buildup on teeth. This technique uses a high-speed dentistry instrument, e.g., a Cavitron ultrasonic scaler, to scrape along the surface of a patient’s teeth. This detailed understanding of the velocity and the trajectory of the droplets generated by the splatter will aid in the development of hygiene mechanisms to guarantee the safety of those performing these procedures and people in clinics or hospitals. Optical flow tracking velocimetry (OFTV) method was employed to obtain droplet velocity and trajectory in a two-dimensional plane. Multiple data collection planes were taken in different orientations around a model of adult mandibular teeth. This technique provided pseudo-three-dimensional velocity information for the droplets within the splatter developed from this high-speed dental instrument. These results indicated that within the three-dimensional splatter produced there were high velocities (1–2 m/s) observed directly below the intersection point between the front teeth and the scaler. The splatter formed a cone-shape structure that propagated 10–15 mm away from the location of the scaler tip. From the droplet trajectories, it was observed that high velocity isolated droplets propagate away from the bulk of the splatter. It is these droplets which are concerning for health safety to those performing the medical procedures. Using a shadowgraphy technique, we further characterize the individual droplets’ size and their individual velocity. We then compare these results to previously published distributions. The obtained data can be used as a first step to further examine flow and transport of droplets in clinics/dental offices.
This study is focused on the motion of a dilute suspension containing rigid, spherical, non-Brownian, noncolloidal particles flowing over and through porous media models. The flow is confined to very low Reynolds numbers. To examine the velocity distribution particle image velocimetry (PIV) was applied in conjunction with refractive index matching (RIM) techniques. This study is the first of its kind analyzing the interaction between two common engineering systems: suspension fluid and porous media.
The flow velocity, trajectories, and size distribution of droplets produced during a dental scaling procedure using a Cavitron ultrasonic scalar (CUS) has been investigated by optical flow tracking velocimetry and shadowgraphy measurements. The droplet sizes are found to vary from 5 -500 µm; these correspond to droplet nuclei that could carry viruses. The droplet velocities also vary between 0.7 m/s and 1.3 m/s. These observations confirm the critical role of aerosols in the transmission of disease during dental procedures, providing invaluable knowledge for developing protocols and procedures to ensure the safety of both dentists and patients especially during COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.