Acute myeloid leukemia (AML) relapse after allogeneic hematopoietic cell transplantation (allo-HCT) has a dismal prognosis. We found that T cells of patients relapsing with AML after allo-HCT exhibited reduced glycolysis and interferon-γ production. Functional studies in multiple mouse models of leukemia showed that leukemia-derived lactic acid (LA) interfered with T cell glycolysis and proliferation. Mechanistically, LA reduced intracellular pH in T cells, led to lower transcription of glycolysis-related enzymes, and decreased activity of essential metabolic pathways. Metabolic reprogramming by sodium bicarbonate (NaBi) reversed the LA-induced low intracellular pH, restored metabolite concentrations, led to incorporation of LA into the tricarboxylic acid cycle as an additional energy source, and enhanced graft-versus-leukemia activity of murine and human T cells. NaBi treatment of post–allo-HCT patients with relapsed AML improved metabolic fitness and interferon-γ production in T cells. Overall, we show that metabolic reprogramming of donor T cells is a pharmacological strategy for patients with relapsed AML after allo-HCT.
Acute graft- versus -host disease (GvHD) causes significant mortality in patients undergoing allogeneic hematopoietic cell transplantation. Immunosuppressive treatment for GvHD can impair the beneficial graft- versus -leukemia effect and facilitate malignancy relapse. Therefore, novel approaches that protect and regenerate injured tissues without impeding the donor immune system are needed. Bile acids regulate multiple cellular processes and are in close contact with the intestinal epithelium, a major target of acute GvHD. Here, we found that the bile acid pool is reduced following GvHD induction in a preclinical model. We evaluated the efficacy of bile acids to protect the intestinal epithelium without reducing anti-tumor immunity. We observed that application of bile acids decreased cytokine-induced cell death in intestinal organoids and cell lines. Systemic prophylactic administration of tauroursodeoxycholic acid (TUDCA), the most potent compound in our in vitro studies, reduced GvHD severity in three different murine transplantation models. This effect was mediated by decreased activity of the antigen presentation machinery and subsequent prevention of apoptosis of the intestinal epithelium. Moreover, bile acid administration did not alter the bacterial composition in the intestine suggesting that its effects are cell-specific and independent of the microbiome. Treatment of human and murine leukemic cell lines with TUDCA did not interfere with the expression of antigen presentation-related molecules. Systemic T-cell expansion and especially their cytotoxic capacity against leukemic cells remained intact. This study establishes a role for bile acids in the prevention of acute GvHD without impairing the graft- versus -leukemia effect. In particular, we provide a scientific rationale for the systematic use of TUDCA in patients undergoing allogeneic hematopoietic cell transplantation.
Microbial invasion into the intestinal mucosa after allogeneic hematopoietic cell transplantation (allo-HCT) triggers neutrophil activation and requires antibiotic interventions to prevent sepsis. However, antibiotics lead to a loss of microbiota diversity, which is connected to a higher incidence of acute graft-versus-host disease (aGVHD). Antimicrobial therapies that eliminate invading bacteria and reduce neutrophil-mediated damage without reducing the diversity of the microbiota are therefore highly desirable. A potential solution would be the use of antimicrobial antibodies that target invading pathogens, ultimately leading to their elimination by innate immune cells. In a mouse model of aGVHD, we investigated the potency of active and passive immunization against the conserved microbial surface polysaccharide poly-N-acetylglucosamine (PNAG) that is expressed on numerous pathogens. Treatment with monoclonal or polyclonal antibodies to PNAG (anti-PNAG) or vaccination against PNAG reduced aGVHD-related mortality. Anti-PNAG treatment did not change the intestinal microbial diversity as determined by 16S ribosomal DNA sequencing. Anti-PNAG treatment reduced myeloperoxidase activation and proliferation of neutrophil granulocytes (neutrophils) in the ileum of mice developing GVHD. In vitro, anti-PNAG treatment showed high antimicrobial activity. The functional role of neutrophils was confirmed by using neutrophil-deficient LysMcreMcl1fl/fl mice that had no survival advantage under anti-PNAG treatment. In summary, the control of invading bacteria by anti-PNAG treatment could be a novel approach to reduce the uncontrolled neutrophil activation that promotes early GVHD and opens a new avenue to interfere with aGVHD without affecting commensal intestinal microbial diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.