Stomach contents of harbour porpoises (Phocoena phocoena) collected in the Netherlands between 2003 and 2013 were inspected for the presence of plastic and other man-made litter. In 654 stomach samples the frequency of occurrence of plastic litter was 7% with less than 0.5% additional presence of non-synthetic man-made litter. However, we show that when a dedicated standard protocol for the detection of litter is followed, a considerably higher percentage (15% of 81 harbour porpoise stomachs from the period 2010–2013) contained plastic litter. Results thus strongly depended on methods used and time period considered. Occurrence of litter in the stomach was correlated to the presence of other non-food remains like stones, shells, bog-wood, etc., suggesting that litter was often ingested accidentally when the animals foraged close to the bottom. Most items were small and were not considered to have had a major health impact. No evident differences in ingestion were found between sexes or age groups, with the exception that neonates contained no litter. Polyethylene and polypropylene were the most common plastic types encountered. Compared to earlier literature on the harbour porpoise and related species, our results suggest higher levels of ingestion of litter. This is largely due to the lack of dedicated protocols to investigate marine litter ingestion in previous studies. Still, the low frequency of ingestion, and minor number and mass of litter items found in harbour porpoises in the relatively polluted southern North Sea indicates that the species is not a strong candidate for annual monitoring of marine litter trends under the EU marine strategy framework directive. However, for longer-term comparisons and regional differences, with proper dedicated protocols applied, the harbour porpoise has specific use in quantifying litter presence in the, for that specific objective, poorly studied benthic marine habitat.Electronic supplementary materialThe online version of this article (10.1007/s13280-017-1002-y) contains supplementary material, which is available to authorized users.
Long‐lived top predators shape biodiversity structure in their ecosystems and predator–prey interactions are critical in decoding how communities function. Studies on the foraging ecology of seals and Eurasian otters in Western Europe are outdated and most studies solely performed traditional hard part analysis. Molecular metabarcoding can be used as an innovative noninvasive diet analysis tool, which has proven efficient and complementary to hard part analysis, however, lacking application in the wider North Sea area. In this study, DNA from digesta, collected between 2014–2020, were used to identify fish species in the diet of 47 Eurasian otters, 54 harbour seals and 21 grey seals by applying a next‐generation metabarcoding approach. A newly designed 16S rRNA primer, providing the best coverage of >130 local marine and freshwater fish species, was used to amplify prey DNA from seal scats and otter gut content sampled from the North Sea and regional freshwater bodies. Frequent fish species included tench, ninespine stickleback and white bream in otters; hooknose and common roach in grey seals and Pleuronectidae and sand gobies in harbour seals. Bipartite network analysis showed a strong overlap of harbour and grey seal diets. Otter diet intersected with both seal species in terms of freshwater species. This study provides new knowledge about dietary composition and community assemblage of fish prey in otters and seals in the North Sea and regional freshwaters, and a new molecular tool to elucidate predator–prey interactions and interspecies competition in complex and changing ecosystems under pressure from anthropogenic activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.